Hadoop作业性能指标及參数调优实例 (二)Hadoop作业性能调优7个建议
作者:Shu, Alison
Hadoop作业性能调优的两种场景:
一、用户观察到作业性能差,主动寻求帮助。
(一)eBayEagle作业性能分析器
1. Hadoop作业性能异常指标
2. Hadoop作业性能调优7个建议
(二)其他參数调优方法
二、Hadoop集群报告异常,发现个别作业导致集群事故。
一、用户观察到作业性能差,主动寻求帮助。
(一)eBay Eagle作业性能分析器
对一般作业性能调优。eBay Eagle[i]的作业性能分析器已经能满足用户大部分需求。
eBayEagle作业性能分析包括两个部分,第一部分是依据定量指标。捕捉性能异常的作业。在本文中。我们不考虑Hadoop集群或者节点故障造成作业性能的普遍下降,因此我们觉得这些性能指标异常仅仅与Hadoop作业有关,能够通过性能调优来改善。
第二部分是调优建议。依据Hadoop作业性能异常指标推断作业是否须要调优。再综合採用第二部分的建议。
第二部分也能够作为Hadoop作业开发的指引,并在后期性能測试中检查。
1. Hadoop作业性能异常指标
參阅《Hadoop作业性能指标及參数调优实例(一)Hadoop作业性能异常指标》
2. Hadoop作业性能调优的7个建议
§ 压缩输出文件
压缩能够节省磁盘和网络的IO,提高作业性能。
Gzip/Snappy/Lzo/Bzip2都是经常使用的压缩格式,依据须要选用。
四种经常使用压缩格式的特征[ii]:
|
压缩格式 |
split |
native |
压缩率 |
速度 |
Hadoop自带 |
linux命令 |
换成压缩格式后,原来的应用程序是否要改动 |
|
Gzip |
否 |
是 |
非常高 |
比較快 |
是 |
有 |
和文本处理一样,不须要改动 |
|
Lzo |
是 |
是 |
比較高 |
非常快 |
否 |
有 |
须要建索引。还须要指定输入格式 |
|
Snappy |
否 |
是 |
比較高 |
非常快 |
否 |
没有 |
和文本处理一样,不须要改动 |
|
Bzip2 |
是 |
否 |
最高 |
慢 |
是 |
有 |
和文本处理一样,不须要改动 |
參数调优(用lzo压缩):
mapreduce.output.fileoutputformat.compress=true
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.LzoCodec
mapreduce.map.output.compress=true
mapreduce.map.output.compress.codec=com.hadoop.compression.lzo.LzoCodec
§ 应对数据倾斜
假设一些Reduce比其它Reduce明显耗时很多其它,我们觉得发生数据倾斜,整个作业会由于数据倾斜而耗时很多其它。
eBay Eagle对数据倾斜的定义:
(WorstReduceTime - avgReduceTime > 30 minutes)and (WorstReduceInputRecords / avgReduceInputRecords > 5)
有非常多解决方式。比如写MapReduce作业时,合并中间数据。避免大量小文件。
在工作中,我们碰到数据倾斜的咨询集中在Hive查询。參数调优例如以下:
-合并小文件((文件再小,Block再大,每一个小文件都会占用一个Block)
hive.merge.mapfiles=true
hive.merge.size.per.task=256000000
-利用Map端聚合。达到Reduce负载均衡
hive.groupby.skewindata=true
hive.optimize.skewjoin=true
hive.map.aggr=true
hive.groupby.mapaggr.checkinterval = 100000
§ 添加内存,降低GC时间
当Map或Reduce内存不够时。须要很多其它的GC时间,从而影响作业性能。
eBay Eagle对GC时间过长的定义:
GC_TIME_MILLIS / CPU_MILLISECONDS > 0.1
作业參数调优。提高Heap size:
mapreduce.map.java.opts=-Xmx4g
mapreduce.reduce.java.opts=-Xmx4g
在提高Heap Size參数时,注意Heap Size不得超过物理内存。
mapreduce.map.memory.mb > mapreduce.map.java.opts
mapreduce.reduce.memory.mb >mapreduce.reduce.java.opts
§ 避开资源竞争
系统资源紧张会造成Map或Reduce进展缓慢。用户能够从Scheduler中观察不同queue的资源使用情况。避开繁忙的窗体。假设作业有多个queue能够选择,选择资源空暇的queue。
设置queue:
mapreduce.queue.jobname=<queue_name>
演示样例:通过ResourceMananger web URL 观察系统资源使用情况
§ 添加内存。降低磁盘溢出
设置下面作业參数降低磁盘溢出:(适当大于默认值)
mapreduce.map.sort.spill.percent=1
mapreduce.task.io.sort.mb=1024
mapreduce.map.java.opts=-Xmx4096M
§ 保留系统默认的最小分片大小
有些人会设置split.minsize作业參数以控制Map数量。但这样的做法会削弱数据本地性。减少作业性能。建议保留系统默认设置。
在默认配置下。split大小和block大小是同样的。防止一个split假设相应的多个block并且这些block大多不在本地。
保留作业參数默认值:
mapreduce.input.fileinputformat.split.minsize=0
§ 控制Map和Reduce数量
合理的Map和Reduce数量。有利于提高作业性能。
我们能够通过參数直接设置Reduce的数量。但无法直接指定Map的数量。參考computeSplitSize()方法。当输入文件指定时,Map的数量由SplitSize决定,我们能够通过改动dfs.blocksize和split.minsize来设定Split Size。上文我们建议使用保留系统默认的最小分片大小,所以我们仅仅能通过改动dfs.blocksize參数来控制Map数量。值得注意的是我们能够有若干办法控制输入文件。
当Map平均输入非常大,或者用时太长。通过下面办法能够添加Map数量
-事先採用Splittable的压缩格式,比方Lzo格式压缩输入文件。
-设置较小的Block Size
当Map平均输入过小,或者用时太短,通过下面办法能够降低Map数量
-事先合并输入文件,降低小文件 (小文件太多,就算Block Size再大,每一个小文件都会占用一个Block)
-设置较大的Block Size
computeSplitSize()方法说明[i]:
*上图为引用Hadoop The Definitive Guide 3rd Edition[i],
所列属性为Hadoop 1。在Hadoop 2中,部分属性名称已更新,比方Hadoop 1中dfs.block.size在Hadoop2中更新为dfs.blocksize.
eBay Eagle有关Map和Reduce数量的标杆:
Map作业满足下面条件之中的一个。觉得Map数量太多:
-输入 < 5 MB且用时 < 30秒
-用时 < 10秒
Map作业满足下面条件之中的一个,觉得Map数量太少:
-输入 > 1GB
-用时 > 10分钟
Reduce作业满足下面条件之中的一个,觉得Reduce数量不合理:
-输入 < 256MB 且总用时(包含Shuffle) < 5分钟 且 输出 < 256MB
-输入 > 10GB 且总用时(包含Shuffle) > 30分钟
-总用时(包含Shuffle) < 60秒
-总用时(包含Shuffle) > 1小时 且 用时(不包含Shuffle) > 30分钟
-输入 < 10MB 且用时(不包含Shuffle) < 5分钟 且 输出 < 2GB
-输出 > 10GB 且用时(不包含Shuffle) > 30分钟
Reduce数量推荐方案:
Reduce number=Max(input / 3 G, output / 2 GB,reduceTime / 10 minute)
指定Reduce数量的作业參数:
mapreduce.job.reduces=<Reduce number>
[i] eBay Eagle是eBay自主研发的系统,用于大型Hadoop集群管理,集监控、警示和智能修复功能于一体。eBayEagle即将开源,有望成为Apache的孵化项目。
[ii] http://my.oschina.net/mkh/blog/335395
[iii] Hadoop: TheDefinitive Guide, Third Edition. Hadoop: The Definitive Guide, Third Edition,ISBN: 9781449328917
Hadoop作业性能指标及參数调优实例 (二)Hadoop作业性能调优7个建议的更多相关文章
- Hadoop作业性能指标及參数调优实例 (三)Hadoop作业性能參数调优方法
作者: Shu, Alison Hadoop作业性能调优的两种场景: 一.用户观察到作业性能差,主动寻求帮助. (一)eBayEagle作业性能分析器 1. Hadoop作业性能异常指标 2. Had ...
- Java性能优化权威指南-读书笔记(二)-JVM性能调优-概述
概述:JVM性能调优没有一个非常固定的设置,比如堆大小设置多少,老年代设置多少.而是要根据实际的应用程序的系统需求,实际的活跃内存等确定.正文: JVM调优工作流程 整个调优过程是不断重复的一个迭代, ...
- 【十二】jvm 性能调优工具之 jhat (JVM Heap Analysis Tool)
jhat也是jdk内置的工具之一.主要是用来分析java堆的命令,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言. jhat 非常耗费cpu和内存,所以一般不使 ...
- Hadoop2.6.0配置參数查看小工具
前言 使用Hadoop进行离线分析或者数据挖掘的project师,常常会须要对Hadoop集群或者mapreduce作业进行性能调优. 或许你知道通过浏览器訪问http://master:18088/ ...
- linux下改动内核參数进行Tcp性能调优 -- 高并发
前言: Tcp/ip协议对网络编程的重要性,进行过网络开发的人员都知道,我们所编写的网络程序除了硬件,结构等限制,通过改动Tcp/ip内核參数也能得到非常大的性能提升, 以下就列举一些Tcp/ip内核 ...
- 成为Java GC专家(5)—Java性能调优原则
并不是每个程序都需要调优.如果一个程序性能表现和预期一样,你不必付出额外的精力去提高它的性能.然而,在程序调试完成之后,很难马上就满足它的性能需求,于是就有了调优这项工作.无论哪种编程语言,对应用程序 ...
- linux性能调优概述
- 什么是性能调优?(what) - 为什么需要性能调优?(why) - 什么时候需要性能调优?(when) - 什么地方需要性能调优?(where) - 什么人来进行性能调优?(who) - 怎么样 ...
- Spark的性能调优杂谈
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1> 每一台host上面可以并行N个worker,每一个worke ...
- Mongodb性能调优
摘要 1. Mongodb 适用场景简介 2. Mongodb 性能监控与分析 3. Mongodb 性能优化建议 关于Mongodb的几个大事件 1.根据美国数据库知识大全官网发布的DB热度排行,M ...
随机推荐
- Ubuntu 环境下的mysql 远程访问,redis 远程访问和设置密码 ,mongo 安装 ,设置用户密码,开启远程访问
MySQL远程访问 1.编辑mysql配置文件,把其中bind-address = 127.0.0.1注释了 vi /etc/mysql/mysql.conf.d/mysqld.cnf 2.使用roo ...
- vue+element的表格分页和前端搜索
1.前端后台管理会存在很多表格,表格数据过多就需要分页;2.前端交互每次搜索如果都请求服务器会加大服务器的压力,所以在数据量不是很大的情况下可以一次性将数据返回,前端做检索3.下面贴上一个demo & ...
- VS2015使用过程中参考过的有用链接
VS中的第一个C程序:如何在Visual Studio 2015中编写C程序:https://www.bilibili.com/video/av5921799?from=search&seid ...
- 【Henu ACM Round#18 F】Arthur and Walls
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 考虑,为什么一个连通块里面的空格没有变成一个矩形? 如果不是形成矩形的话. 肯定是因为某个2x2的单张方形里面. 只有一个角是墙.其 ...
- Android-Volley网络通信框架(StringRequest & JsonObjectRequest)
1.回想 上篇对 Volley进行了简介和对它的学习目的与目标,最后,为学习Volley做了一些准备 2.重点 2.1 RequestQueue 请求队列的建立 2.2 学习 StringReques ...
- 【LeetCode OJ 14】Longest Common Prefix
题目链接:https://leetcode.com/problems/longest-common-prefix/ 题目:Write a function to find the longest co ...
- HDU 5389 Zero Escape(DP + 滚动数组)
Zero Escape Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) To ...
- css footer not displaying at the bottom of the page
https://stackoverflow.com/questions/15960290/css-footer-not-displaying-at-the-bottom-of-the-page The ...
- 数据库阿里连接池 Druid配置详解以及web监控统计
java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,有不得不使用数据库连接池.数据库连接池有很多选择,c3p.dhcp.proxool等,druid作为一名后起之秀,凭借其出色的性能,也 ...
- Redis封装之List
/// <summary> /// Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销, /// Redis内部的很多实现,包括发 ...