Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.

Sample Input

2 3 4 1 5 x 7 6 8

Sample Input

2 3 4 1 5 x 7 6 8
题意 : 就是8数码问题,主要时搜索的路径寻找问题,把'x'转换为0,然后把当前这些数都存储为1个状态
分析: 这道题有两道相同的,分别是HDU和POJ,HDU上的数据加强了比POJ更麻烦。。
POJ:正向搜索就好(简单)
 #include <iostream>
#include <cstring> using namespace std; const int maxn = ;
typedef int State[];
State st[maxn];
int goal[] = {, , , , , , , , };
int dx[] = {-, , , };
int dy[] = { , , -, };
int head[maxn], nxt[maxn], fa[maxn];
char dir[maxn]; int Hash(State s) //哈希函数
{
int ret = , i;
for(i = ; i < ; i++) ret = ret * + s[i];
return ret % maxn;
} bool try_to_insert(int rear) //插入哈希表
{
int h = Hash(st[rear]);
for(int e = head[h]; e != -; e = nxt[e])
{
if(memcmp(st[e], st[rear], sizeof(st[e])) == ) return ;
}
nxt[rear] = head[h];
head[h] = rear;
return ;
} int bfs() //遍历
{
int frt = , rear = , i, z;
while(frt < rear)
{
State& s = st[frt];
if(memcmp(s, goal, sizeof(s)) == ) return frt;
for(z = ; s[z] != ; z++);
int x = z / ;
int y = z % ;
for(i = ; i < ; i++)
{
int newx = x + dx[i];
int newy = y + dy[i];
int newz = * newx + newy;
if(newx >= && newx < && newy >= && newy < )
{
State& news = st[rear];
memcpy(news, s, sizeof(s));
news[z] = s[newz];
news[newz] = ;
if(try_to_insert(rear))    //注意这里的路径输出的方式
{
fa[rear] = frt;
switch(i)
{
case : dir[rear] = 'u'; break;
case : dir[rear] = 'd'; break;
case : dir[rear] = 'l'; break;
case : dir[rear] = 'r'; break;
default: break;
}
rear++;
}
}
}
frt++;
}
return ;
} void print(int i) //输出
{
if(fa[i] == -) return;
print(fa[i]);
cout<<dir[i];
} int main()
{
char c[];
int i, ret;
while(cin>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[])
{
for(i = ; i < ; i++) st[][i] = c[i] == 'x' ? : (int)(c[i]-'');
memset(head, -, sizeof(head));
fa[] = -;
ret = bfs();
if(ret)
{
print(ret);
}
else cout<<"unsolvable";
cout<<endl;
}
return ;
}

HDU : 这道题时多组输入,所以不能向上面一样在线写,而是要从最终状态开始倒着把所有状态搜索一遍,之后只需要输入初始状态打表判断输出路径即可;

  学习到的知识有两个:bfs()路径查找类 + 康拓展开,路径的输出:

 /*************************************************************************
> File Name: search.cpp
> Author : PrayG
> Mail: 996930051@qq,com
> Created Time: 2016年07月20日 星期三 10时56分09秒
************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<stack>
#include<set>
#include<cmath>
using namespace std;
const int maxn = ;
int fac[] = {,,,,,,,,,};
int dx[] = {,,-,},dy[] = {,,,-};//drul
char ind[] = "uldr";//与上面相反
string path[maxn];//记录路径
bool vis[maxn];
int aim = ;//123456780 的康拓展开 struct node
{
int s[]; //记录状态
int sit0;  //0 的位置
int val;   //康拓展开的值
string path;  // 路径
}; int cant(int s[])  //康拓展开
{
int code = ;
for(int i = ; i < ; i++)
{
int cnt = ;
for(int j= i+ ; j < ; j++)
{
if(s[i] > s[j])
{
cnt++;
}
}
code += fac[-i] * cnt;
}
return code;
} void bfs()
{
memset(vis,false,sizeof(vis));
queue<node> que;
node cnt1,cnt2;
for(int i = ; i < ;i++)
cnt1.s[i] = i+;
cnt1.s[] = ;
cnt1.sit0 = ;
//printf("aim = %d\n",aim);
cnt1.val = aim;
cnt1.path = "";
path[aim] = "";
que.push(cnt1);
while(!que.empty())
{
cnt1 = que.front();
que.pop();
int x = cnt1.sit0 / ;
int y = cnt1.sit0 % ;
for(int i = ; i < ; i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
int nz = nx * + ny;
if(nx < || nx > || ny < || ny >)
continue;
cnt2 = cnt1;
cnt2.s[cnt1.sit0] = cnt2.s[nz];
cnt2.s[nz] = ;
cnt2.sit0 = nz;
cnt2.val = cant(cnt2.s);
if(!vis[cnt2.val])
{
vis[cnt2.val] = true;
cnt2.path = ind[i] + cnt1.path;
que.push(cnt2);
path[cnt2.val] = cnt2.path;
}
} }
} int main()
{
bfs();
char t;
while(cin >> t)
{
node st;
if(t == 'x'){
st.s[] = ;
st.sit0 = ;
}
else
st.s[] = t - '';
for(int i = ; i< ; i++)
{
cin >> t;
if(t == 'x')
{
st.s[i] = ;
st.sit0 = i;
}
else
st.s[i] = t -'';
}
st.val = cant(st.s);
if(vis[st.val])
{
cout << path[st.val] << endl;
}
else
cout << "unsolvable" << endl;
}
return ;
}
 
 

Eight hdu 1043 poj 1077的更多相关文章

  1. HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  2. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  3. Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  4. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  5. HDU - 1043 - Eight / POJ - 1077 - Eight

    先上题目: Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  6. HDU 1403 Eight&POJ 1077(康拖,A* ,BFS,双广)

    Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  7. HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)

    Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...

  8. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  9. HDU 1043 八数码(八境界)

    看了这篇博客的讲解,挺不错的.http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 判断无解的情况(写完七种境界才发现有直接判 ...

随机推荐

  1. Objective-C的陷阱与缺陷

    Objective-C是一个强大而且非常有用的语言,但是同样也是有一点危险的.这次主题是受到一篇有关C++陷阱的文章启发,来聊聊Objective-C和Cocoa中的陷阱. 简介 我将和Horstma ...

  2. HDU 1039.Easier Done Than Said?【字符串处理】【8月24】

    Easier Done Than Said? Problem Description Password security is a tricky thing. Users prefer simple ...

  3. HDU-3577-Fast Arrangement-区间更新

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3577 好吧,我认为这道题有必要说一下题目意思:毕竟我刚開始是没有看太懂,原谅我这个英语渣渣...ORZ ...

  4. 具体解释C++引用——带你走进引用的世界

     一.介绍引用 首先说引用是什么,大家能够记住,引用就是一个别名,比方小王有个绰号叫小狗.他的妈妈喊小狗回家吃饭.那就是在喊小王回家吃饭. 接下来我们用两行代码来声明一个引用(就拿小王和小狗来说吧 ...

  5. ELK搭建(filebeat、elasticsearch、logstash、kibana)

    ELK部署(文章有点儿长,搭建时请到官网将tar包下载好,按步骤可以完成搭建使用) ELK指的是ElasticSearch.LogStash.Kibana三个开源工具 LogStash是负责数据的收集 ...

  6. 28.STL常用算法

    #include <algorithm> 算法 常用版本 描述 返回Type std::find() find(_InIt _Fisrt,_InIt _Last, _Ty& _Va ...

  7. leetcode 生成杨辉三角形, 118 119 Pascal's Triangle 1,2

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Retu ...

  8. windows下MySQL5.6以上版本,如何通过修改配置文件来修改数据库的最大连接数啊?

    并没有my.ini文件,只有一个my-default.ini文件,并且里面并没有max_connections windows下MySQL5.6以上版本,如何通过修改配置文件来修改数据库的最大连接数啊 ...

  9. ES6中的let、contst

    一 let 1.let 局部变量 不会变量提升,在运用时候要先声明在调用,var 全局变量 会产生变量提升: 2.在块级作用域中纯在let const,他所生命的变量就绑定在这个区域,未经过声明调用会 ...

  10. NodeJS学习笔记 进阶 (8)express+morgan实现日志记录(ok)

    个人总结:这篇文章讲解了Express框架中日志记录插件morgan的示例.读完这篇文章需要10分钟 摘选自网络 章节概览 morgan是express默认的日志中间件,也可以脱离express,作为 ...