点分治真是一个好东西。可惜我不会

这种要求所有路经的题很可能是点分治。

然后我就不会了。。

既然要用点分治,就想,点分治有哪些优点?它可以\(O(nlogn)\)遍历分治树的所有子树。

那么现在的问题就是,如可快速(\(O(n)\)或O\((nlogn)\))求以一个点为根的时候,子树之间的贡献(当然还有根节点的)。

我们注意到一件事,就是一棵子树中一个点对其他子树的点产生贡献当且仅当这个点的颜色在它到根的路径上第一次出现(或者说只算上这些贡献答案正确),且贡献为以这个点为根的子树大小。(不考虑其它子树的颜色)

这个有什么用,我们可以遍历两遍子树,第一遍预处理出所有子树对其它子树的贡献(如上边一段所说把贡献统计),第二次遍历每一颗子树先把这颗树的贡献去掉,统计所有其它的树对这颗树的贡献。

那么具体该怎么做?

void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}

首先dfs1是统计贡献的,用sum记录贡献和,color[i]记录第i种颜色的贡献。

然后根的答案就可以累加了。

那么如可判断一个颜色第一次出现?可以记录一个cnt[i]记录第i种颜色在到根的路径上出现多少次。当cnt[i]等于1的时候统计贡献。

然后

		cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;

用来消除子树贡献。dfs2统计其它子树对这颗子树的贡献。

void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}

如果这颗子树中出现一个颜色,并且它是第一次出现,那么减去所有子树的color[a[u]],加上其它子树的节点总数,因为每一条到其它子树的路径都会产生贡献,这也是我们一开始不考虑贡献对其他子树影响的原因,因为遍历子树的时候会把这些重复的贡献减去。

更具体还是看代码。

// luogu-judger-enable-o2
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
const int N=101000;
int Cnt,head[N];
int g[N],size[N],cnt[N],a[N],sum,color[N],tot,num,root,all,vis[N],ans[N],n;
struct edge{
int to,nxt;
}e[N*2];
void add_edge(int u,int v){
Cnt++;
e[Cnt].nxt=head[u];
e[Cnt].to=v;
head[u]=Cnt;
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void getroot(int u,int f){
g[u]=0;size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
getroot(v,u);
size[u]+=size[v];
g[u]=max(g[u],size[v]);
}
g[u]=max(g[u],all-size[u]);
if(g[u]<g[root])root=u;
}
void dfs1(int u,int f){
cnt[a[u]]++;
size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs1(v,u);
size[u]+=size[v];
}
if(cnt[a[u]]==1){
sum+=size[u];
color[a[u]]+=size[u];
}
cnt[a[u]]--;
}
void clear(int u,int f){
cnt[a[u]]++;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
clear(v,u);
}
if(cnt[a[u]]==1){
sum-=size[u];
color[a[u]]-=size[u];
}
cnt[a[u]]--;
}
void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}
void change(int u,int f,int k){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum+=k*size[u];color[a[u]]+=k*size[u];
}
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
change(v,u,k);
}
cnt[a[u]]--;
}
void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}
void work(int u){
calc(u);
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
root=0,all=size[v];
getroot(v,0);
work(root);
}
}
signed main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<n;i++){
int u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
g[0]=n+10;root=0;all=n;
getroot(1,0);work(root);
for(int i=1;i<=n;i++)printf("%lld\n",ans[i]);
return 0;
}

luogu P2664 树上游戏(点分治)的更多相关文章

  1. Luogu P2664 树上游戏 dfs+树上统计

    题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...

  2. [LuoGu]P2664 树上游戏

    Portal 这题真的好. 看到树上路径, 脑子里就要点分治 这一题对于每个点都要计算一遍, 如果暴算实在不好算, 这样我们就可以考虑算贡献. 直接计算每种颜色的贡献. 因为一条过重心的路径中, 可能 ...

  3. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  4. 洛谷P2664 树上游戏——点分治

    原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...

  5. P2664 树上游戏

    P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...

  6. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  7. 洛谷P2664 树上游戏(点分治)

    传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...

  8. 洛谷P2664 树上游戏 【点分治 + 差分】

    题目 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 现在他想让你求出所有的sum[i] 输入格式 第一行为一个整数n,表示树节点的数量 ...

  9. 【洛谷P2664】 树上游戏 点分治

    code: #include <bits/stdc++.h> #define N 200009 #define ll long long #define setIO(s) freopen( ...

随机推荐

  1. 编程范式(Programming Paradigm)-[ 程序员的编程世界观 ]

    编程范式(Programming Paradigm)是某种编程语言典型的编程风格或者说是编程方式.随着编程方法学和软件工程研究的深入,特别是OO思想的普及,范式(Paradigm)以及编程范式等术语渐 ...

  2. 纯css实现宽度自适应,高度与宽度成比例

    html: <div></div> css div{ width: 33.33%; box-sizing: border-box; float: left; position: ...

  3. JS判断客户端是否是iOS或者Android或者ipad(一)

    通过判断浏览器的userAgent,用正则来判断是否是ios和Android客户端.代码如下<script type="text/javascript"> var u ...

  4. 7、A Design of Group Recommendation Mechanism Considering Opportunity Cost and Personal Activity Using Spark Framework---使用Spark框架的基于机会成本以及个人活动群组推荐机制

    来源EDB2018---EDB 一.摘要: 组推荐是将一种项目(例如产品.服务)推荐给由多个成员组成的组的方法. 最小痛苦法(least Misery)是一种具有代表性的群体推荐方法,其能够推荐考虑群 ...

  5. 解决tpcc_load 报错 error while loading shared libraries: libmysqlclient.so.20

    在刚开始导入tpcc数据仓库时,可能会遇到 error while loading shared libraries: libmysqlclient.so.20这个错误,找不到库文件. 但是,通过fi ...

  6. java实现组合数_n!_杨辉三角_组合数递推公式_回文数_汉诺塔问题

    一,使用计算机计算组合数 1,设计思想 (1)使用组合数公式利用n!来计算Cn^k=n!/k!(n-k)!用递推计算阶乘 (2)使用递推的方法用杨辉三角计算Cn+1^k=Cn^k-1+Cn^k 通过数 ...

  7. PHP第八课 字符串拆分经常使用函数

    课程概要: 通过这节课可以对字符串进行主要的操作. 字符串知识点: 1.字符串的处理介绍 2.经常使用的字符串输出函数 3.经常使用的字符串格式化函数 4.字符串比較函数 5.正則表達式在字符串中的应 ...

  8. node08---EJS模版

    四.模板引擎 <a href="<%= url %>"><img src="<%= imageURL %>" alt= ...

  9. kafka的使用

    kafka基于zookeeper. 需要安装kafka.zookeeper. 安装方法参考:http://tzz6.iteye.com/blog/2401197 启动zookeeper:点击zkSer ...

  10. GetExecutingAssembly() 和 GetCallingAssembly() 的区别

    在TCX_1710项目代码的启动项目根目录路径下的Global.asax.cs配置文件中的MVCApplication类中的Application_Start()方法中,配置了项目启动时要加载的项目信 ...