Sequence models are central to NLP: they are models where there is some sort of dependence through time between your inputs. The classical example of a sequence model is the Hidden Markov Model for part-of-speech tagging. Another example is the conditional random field.

LSTM’s in Pytorch

Pytorch’s LSTM expects all of its inputs to be 3D tensors. The semantics of the axes of these tensors is important. The first axis is the sequence itself, the second indexes instances in the mini-batch, and the third indexes elements of the input. We haven’t discussed mini-batching, so lets just ignore that and assume we will always have just 1 dimension on the second axis. If we want to run the sequence model over the sentence “The cow jumped”, our input should look like

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1) lstm=nn.LSTM(3,3) #Input dim is 3, output dim is 3
inputs = [torch.randn(1, 3) for _ in range(5)] # make a sequence of length 5 # initialize the hidden state.
hidden = (torch.randn(1, 1, 3),
torch.randn(1, 1, 3)) for i in inputs:
out,hidden=lstm(i.view(1,1,-1),hidden) inputs=torch.cat(inputs).view(len(inputs),1,-1)
hidden=(torch.randn(1,1,3),torch.randn(1,1,3))
out,hidden=lstm(inputs,hidden)
print(out)
print(hidden)

Example: An LSTM for Part-of-Speech Tagging

Prepare data:

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long) training_data = [
("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),
("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
tag_to_ix = {"DET": 0, "NN": 1, "V": 2} # These will usually be more like 32 or 64 dimensional.
# We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6
HIDDEN_DIM = 6

Create the model:

class LSTMTagger(nn.Module):

    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim) # The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden() def init_hidden(self):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim)) def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)
return tag_scores

Train the model:

model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1) # See what the scores are before training
# Note that element i,j of the output is the score for tag j for word i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores) for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad() # Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
model.hidden = model.init_hidden() # Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix) # Step 3. Run our forward pass.
tag_scores = model(sentence_in) # Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss = loss_function(tag_scores, targets)
loss.backward()
optimizer.step() # See what the scores are after training
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs) # The sentence is "the dog ate the apple". i,j corresponds to score for tag j
# for word i. The predicted tag is the maximum scoring tag.
# Here, we can see the predicted sequence below is 0 1 2 0 1
# since 0 is index of the maximum value of row 1,
# 1 is the index of maximum value of row 2, etc.
# Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)

Sequence Models and Long-Short Term Memory Networks的更多相关文章

  1. LSTM学习—Long Short Term Memory networks

    原文链接:https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Recurren ...

  2. LSTM(Long Short Term Memory)

    长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...

  3. [C5W1] Sequence Models - Recurrent Neural Networks

    第一周 循环序列模型(Recurrent Neural Networks) 为什么选择序列模型?(Why Sequence Models?) 在本课程中你将学会序列模型,它是深度学习中最令人激动的内容 ...

  4. Sequence Models

    Sequence Models This is the fifth and final course of the deep learning specialization at Coursera w ...

  5. [C7] Andrew Ng - Sequence Models

    About this Course This course will teach you how to build models for natural language, audio, and ot ...

  6. Sequence Models 笔记(一)

    1 Recurrent Neural Networks(循环神经网络) 1.1 序列数据 输入或输出其中一个或两个是序列构成.例如语音识别,自然语言处理,音乐生成,感觉分类,dna序列,机器翻译,视频 ...

  7. 《Sequence Models》课堂笔记

    Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一 ...

  8. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  9. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

随机推荐

  1. [Angular] Ngrx/effects, Action trigger another action

    @Injectable() export class LoadUserThreadsEffectService { constructor(private action$: Actions, priv ...

  2. 数字图像处理原理与实践(MATLAB版)勘误表

    本文系<数字图像处理原理与实践(MATLAB版)>一书的勘误表. [内容简单介绍]本书全面系统地介绍了数字图像处理技术的理论与方法,内容涉及几何变换.灰度变换.图像增强.图像切割.图像去噪 ...

  3. iPad和iPhone开发的异同

    niPad和iPhone开发的异同   niPad简介 n什么是iPad p一款苹果公司于2010年发布的平板电脑 p定位介于苹果的智能手机iPhone和笔记本电脑产品之间 p跟iPhone一样,搭载 ...

  4. 利用for循环的嵌套输出图形--课后作业

    for (int i = 1; i <= 8; i++) { int a, b; for (a = 1; a < i; a++) Console.Write(" "); ...

  5. JavaScript实现简单图片滚动 --9张图告诉你,C罗欲哭无泪

    源代码下载:http://download.csdn.net/detail/u011043843/7510425 昨晚德国和葡萄牙的焦点之战你看了吗?北京时间凌晨的比赛中.C罗领衔的葡萄牙0-4德国被 ...

  6. java-工具代码

    格式化输出 //d:是输出整数 //10;表示输出10位整数 //0:表示如果不够10位的话,用0来占位,也可以用写成空格,用空格来占位 String a = String.format(" ...

  7. AndroidStudio使用properties资源文件

    在Android项目开发中,为了一些公用资源使用方便,可以在assets资源文件夹中将需要用到的资源写成.properties或者.json的文件形式,并进行读取使用.在做html5+javascri ...

  8. 【u114】旅行计划(12月你好)

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 小明要去一个国家旅游.这个国家有N个城市,编号为1-N,并且有M条道路连接着,小明准备从其中一个城市出 ...

  9. 采用navicat导出表结构及数据insert声明

    旧navicat有一段时间,查找navicat真的很方便,它可以支持各种数据库的. 他一直认为无处不在sql文件比较麻烦,每个表会生成一个sql档,不方便开展进口业务.今天,它已突然发现了一个批次sq ...

  10. 详解Qt,并举例说明动态编译(shared)和静态编译(static)以及debug and release 编译版本区别(可产生静态版的Debug版本,需要把-release 改为 –debug-and-release)

    作为初入Qt学习的新人,花了整整一两天时间,对Qt编译版本等问题进行了一步步探索,首先感谢网站博客中文章,开始也不是很明白一些几个问题: 1.Qt版本问题 作为初学者,可能下载时这么多版本,如何选择呢 ...