Sequence Models and Long-Short Term Memory Networks
- LSTM’s in Pytorch
- Example: An LSTM for Part-of-Speech Tagging
- Exercise: Augmenting the LSTM part-of-speech tagger with character-level features
Sequence models are central to NLP: they are models where there is some sort of dependence through time between your inputs. The classical example of a sequence model is the Hidden Markov Model for part-of-speech tagging. Another example is the conditional random field.
LSTM’s in Pytorch
Pytorch’s LSTM expects all of its inputs to be 3D tensors. The semantics of the axes of these tensors is important. The first axis is the sequence itself, the second indexes instances in the mini-batch, and the third indexes elements of the input. We haven’t discussed mini-batching, so lets just ignore that and assume we will always have just 1 dimension on the second axis. If we want to run the sequence model over the sentence “The cow jumped”, our input should look like
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1) lstm=nn.LSTM(3,3) #Input dim is 3, output dim is 3
inputs = [torch.randn(1, 3) for _ in range(5)] # make a sequence of length 5 # initialize the hidden state.
hidden = (torch.randn(1, 1, 3),
torch.randn(1, 1, 3)) for i in inputs:
out,hidden=lstm(i.view(1,1,-1),hidden) inputs=torch.cat(inputs).view(len(inputs),1,-1)
hidden=(torch.randn(1,1,3),torch.randn(1,1,3))
out,hidden=lstm(inputs,hidden)
print(out)
print(hidden)
Example: An LSTM for Part-of-Speech Tagging
Prepare data:
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long) training_data = [
("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),
("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
tag_to_ix = {"DET": 0, "NN": 1, "V": 2} # These will usually be more like 32 or 64 dimensional.
# We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6
HIDDEN_DIM = 6
Create the model:
class LSTMTagger(nn.Module): def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim) # The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden() def init_hidden(self):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim)) def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)
return tag_scores
Train the model:
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1) # See what the scores are before training
# Note that element i,j of the output is the score for tag j for word i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores) for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad() # Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
model.hidden = model.init_hidden() # Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix) # Step 3. Run our forward pass.
tag_scores = model(sentence_in) # Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss = loss_function(tag_scores, targets)
loss.backward()
optimizer.step() # See what the scores are after training
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs) # The sentence is "the dog ate the apple". i,j corresponds to score for tag j
# for word i. The predicted tag is the maximum scoring tag.
# Here, we can see the predicted sequence below is 0 1 2 0 1
# since 0 is index of the maximum value of row 1,
# 1 is the index of maximum value of row 2, etc.
# Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)
Sequence Models and Long-Short Term Memory Networks的更多相关文章
- LSTM学习—Long Short Term Memory networks
原文链接:https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Recurren ...
- LSTM(Long Short Term Memory)
长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...
- [C5W1] Sequence Models - Recurrent Neural Networks
第一周 循环序列模型(Recurrent Neural Networks) 为什么选择序列模型?(Why Sequence Models?) 在本课程中你将学会序列模型,它是深度学习中最令人激动的内容 ...
- Sequence Models
Sequence Models This is the fifth and final course of the deep learning specialization at Coursera w ...
- [C7] Andrew Ng - Sequence Models
About this Course This course will teach you how to build models for natural language, audio, and ot ...
- Sequence Models 笔记(一)
1 Recurrent Neural Networks(循环神经网络) 1.1 序列数据 输入或输出其中一个或两个是序列构成.例如语音识别,自然语言处理,音乐生成,感觉分类,dna序列,机器翻译,视频 ...
- 《Sequence Models》课堂笔记
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一 ...
- 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记
第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...
- 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention
Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...
随机推荐
- 忙里偷闲( ˇˍˇ )闲里偷学【C语言篇】——(4)for == while ?
一.for和while等价替换 int i = 1; for (i; i<=100; i++){ sum = sum + 1; } int i = 1; while(i<=100){ su ...
- HDU 5044 Tree(树链剖分)
HDU 5044 Tree field=problem&key=2014+ACM%2FICPC+Asia+Regional+Shanghai+Online&source=1&s ...
- [Ramda] Change Object Properties with Ramda Lenses
In this lesson we'll learn the basics of using lenses in Ramda and see how they enable you to focus ...
- Java访问修饰符(转)
类.方法.成员变量和局部变量的可用修饰符 修饰符 类 成员方法 构造方法 成员变量 局部变量 abstract(抽象的) √ √ - - - static (静态的) - √ - √ - public ...
- ueditor在表单中的提交
近期一直在找一个比較好点的WEB文本编辑器.发现ueditor还是不错的.可是在表单提交数据后有一些问题.由于他不像曾经的版本号一样提供一个虚拟的文本框去提交数据,所以网上搜索的结果都不能用了.依据u ...
- mysql常用控制台命令
作者:朱金灿 来源:http://blog.csdn.net/clever101 1.登陆mysql,语法为:mysql -u[用户名] -p[密码],示例:mysql -uroot -p123456 ...
- sparksql 动态设置schema将rdd转换成dataset/dataframe
java public class DynamicDemo { private static SparkConf conf = new SparkConf().setAppName("dyn ...
- for, for..in, in, for...of的区别
for是ES5里做数组循环里最常用的 for (var i = 0; i < array.length; i++) { // todo } for...in是ES5里用来遍历对象属性用的 var ...
- React父子组件的一个混淆点
反正我自己是混淆了,React父子组件和组件类的继承弄混在一起了.这两个东西完全是不相关的. 父子组件可以看成两个组件标签的包含关系,在另外一个组件标签的内部就是子组件,父子组件通过这种关系通信. 组 ...
- 【Struts2学习笔记(4)】指定需要Struts 2请求后缀的常量定义复杂的过程
一.指定需要Struts 2请求后缀处理 我们是在违约前.action后缀访问Action. 事实上默认后缀是通过不断"struts.action.extension"进行更改.例 ...