【BZOJ 1150】[CTSC2007]数据备份Backup
【链接】 我是链接,点我呀:)
【题意】
在这里输入题意
【题解】
选择的连接肯定是相邻的点对。
那么我们处理出来长度为n-1的数组a
其中a[i-1] = dis[i]-dis[i-1]
那么问题就转化成在a数组中取出不相邻的k个数字。
这k个数字的和要求最小。
那么我们把每个数字都加入到堆中去。
然后对于k个数字。
每次取出堆中的最小值x
累加答案
但是这样做可能不是正确的。
因为可能选择x-1,x+1这两个点比单独选择一个点来得更优一些。
(如果你发现选x不是最优的->不选x->那么肯定吧x-1和x+1都选了更好
因此我们得给程序一个"反悔"的机会。
怎么给呢?
我们可以把x-1,x+1两个点的权值和减去x的权值和->temp。
然后加入到堆中去。
然后把x-1,x+1这两个点删掉。
x这个点的权值设置为刚才提到的temp
(这里要注意的一个思想就是,把x-1,x,x+1看成是一个整体,
这样下次如果再选这个x,就表示x不选了而把x-1,x+1选上。
->累加答案
这时仍然把x看成是一个点。
把它左边(此时是x-2)右边(x+2)的点删掉.
然后把a[x-2]+a[x+2]-a[x]再加入到堆中
重复上述步骤就好了
(这个时候-a[x]其实就是把那个"整体"里面选的变成不选,不选的变成选的了
(只有这样,x-2和x+2才能够被选中
(而且x这个整体里面会发现选中的点的个数总是比没选中的点个数多恰好1,所以再把x-2,x+2加上,刚好只会增加一个选择的点
我们每一次取出答案。
其实都只会让选中的点的个数递增1
所以堆中的每个元素其实对应的是,再多选一个点的话。
增加的代价是多少。
而我们每次选的都是最小的代价。
因此贪心的策略是正确的。
【代码】
/**************************************************************
Problem: 1150
User: chengchunyang
Language: C++
Result: Accepted
Time:696 ms
Memory:5260 kb
****************************************************************/
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5;
const int INF = 1e9+10;
int n,k;
int dis[N+10],a[N+10],L[N+10],R[N+10];
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > >pq;
bool vis[N+10];
int main()
{
scanf("%d%d",&n,&k);
for (int i = 1;i <= n;i++) scanf("%d",&dis[i]);
for (int i = 2;i <= n;i++) a[i-1] = dis[i]-dis[i-1];
n--;
a[0] = INF,a[n+1] = INF;
for (int i = 0;i <= n+1;i++) L[i] = i-1,R[i] = i+1;
for (int i = 1;i <= n;i++) pq.push(make_pair(a[i],i));
ll ans = 0;
for (int i = 1;i <= k;i++){
pair<ll,int> x;
do{
x = pq.top();pq.pop();
}while (vis[x.second]);
int id = x.second;
ans+=a[id];
a[id] = a[L[id]]+a[R[id]]-a[id];
pq.push(make_pair(a[id],id));
vis[L[id]] = vis[R[id]] = 1;
R[L[L[id]]] = id;
L[R[R[id]]] = id;
L[id] = L[L[id]];
R[id] = R[R[id]];
}
printf("%lld\n",ans);
return 0;
}
【BZOJ 1150】[CTSC2007]数据备份Backup的更多相关文章
- 【链表】bzoj 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1136 Solved: 458[Submit] ...
- [BZOJ 1150] [CTSC2007] 数据备份Backup 【贪心 + 链表】
题目链接:BZOJ - 1150 题目分析 可以看出,我们选的 k 条边一定是相邻两点之间的线段.我们可以将每条边看成一个点,那么我们就是要在 n-1 个点中选出互不相邻的 k 个,使它们的和最小. ...
- bzoj 1150: [CTSC2007]数据备份Backup
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
- BZOJ 1150 [CTSC2007]数据备份Backup(贪心+优先队列)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1150 [题目大意] 给出n个数,请你挑出k对(每个数不可重复选取),使得他们差的绝对值 ...
- BZOJ 1150 CTSC2007 数据备份Backup 堆+馋
标题效果:给定一个长度n−1n-1的序列,要求选出kk个不相邻的数使得和最小 费用流显然能跑.并且显然过不去- - 考虑用堆模拟费用流 一个错误的贪心是每次取最小.这样显然过不去例子 我们把[每次取最 ...
- bzoj 1150: [CTSC2007]数据备份Backup【链表+堆】
参考:http://blog.csdn.net/Regina8023/article/details/44158947 神奇的做法.题意相当于若干个数取不相邻的k个使最小.先把数组差分,len表示这段 ...
- 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...
- 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...
- bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆
[CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2727 Solved: 1099[Submit][Stat ...
- 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)
[BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...
随机推荐
- DRF lazy Serializer
class LazySerializer: def __init__(self, cls_name, **kwargs): self.cls_name = cls_name self.kwargs = ...
- C语言基本语法——指针
1.什么是指针 2.指针用于参数 3.指针用于返回值 4.指针加减操作 5.指针与数组区别 1.什么是指针 • 内存被分为字节,每个字节有唯一的地址,指针指的就是内存地址. • 保存指针的变量,就叫指 ...
- vim 跳转指定行
在编辑模式下输入 ngg 或者 nG n为指定的行数(如25) 25gg或者25G 跳转到第25行. 在命令模式下输入行号n : n 如果想打开文件即跳转 vim +n FileName 查看当然光标 ...
- HDU——T 1498 50 years, 50 colors
http://acm.hdu.edu.cn/showproblem.php?pid=1498 Time Limit: 2000/1000 MS (Java/Others) Memory Limi ...
- MyBATIS插件原理第一篇——技术基础(反射和JDK动态代理)(转)
在介绍MyBATIS插件原理前我们需要先学习一下一些基础的知识,否则我们是很难理解MyBATIS的运行原理和插件原理的. MyBATIS最主要的是反射和动态代理技术,让我们首先先熟悉它们. 1:Jav ...
- Qt之命令行参数
简述 在Qt之进程间通信(QProcess)一节,我们讲解了如何通过QProcess来进行进程间的通信.主要通过启动外部程序,然后通过命令行的方式传递参数. 这里,我们可以通过Qt Creator来设 ...
- cocos2d-x学习笔记(18)--游戏打包(windows平台)
cocos2d-x学习笔记(18)--游戏打包(windows平台) 之前做好的游戏,都是在vs2008下编译执行的.假设说想把游戏公布到网上或者和其它人一起分享游戏,那就得对游戏 ...
- Struts2中的异步提交(ajaxfileupload异步上传(图片)插件的使用)
server端採用struts2来处理文件上传. 所需环境: jquery.js ajaxfileupload.js struts2所依赖的jar包 及struts2-json-plugin-2.1. ...
- linux定时备份mysql数据库文件
1.设定定时器:终端敲入:crontab -e命令 2,然后写入 00 23 * * * /home/db_bak_file/dbbak.sh >>/home/db_bak_fil ...
- 安卓中经常使用控件遇到问题解决方法(持续更新和发现篇幅)(在textview上加一条线、待续)
TextView设置最多显示30个字符.超过部分显示...(省略号),有人说分别设置TextView的android:signature="true",而且设置android:el ...