[JZOJ4024] [佛山市选2015] 石子游戏 解题报告
Description
(1)移去整堆石子
(2)假设石子堆中有X颗石子,取出Y颗石子,其中1<=Y,(Y,X)=1
游戏结束的条件是:取出最后一颗石子的人胜出。众所周知,Alice和Bob都是绝顶聪明的,假设他们在游戏中都采取最优的策略,问最后谁会胜出游戏呢?
Alice先取。
Input
接下来T组测试数据,在每组数据中,第一行包含一个整数N,表示有多少堆石子。第二行N个正整数,分别表示每堆有多少颗石子。
Output
Sample Input
3
3
3 5 6
4
2 3 6 9
5
3 2 1 1000000 999999
Sample Output
Alice
Bob
Alice
Data Constraint
100%的数据,T<=100,N<=100,每堆石子数量不大于1,000,000
题目大意就不解释了
考虑构造这个游戏的SG函数
SGi = mex ( { SGi }( i, j )=1 ∪ { 0 } ) 其中 mex 表示集合中最小没有出现过的自然数
为什么是这样的呢?我们联想到传统的取石子游戏,并且由于(Y,X)是互质的,(X,X-Y)也是互质的。i=X,j=X-Y
下面我们讨论这个SG函数的性质:
首先 SG0 = 0(终止态)。
若 i 是质数,那么对于小于 i 的所有正整数都可以被取到,那么 SGi则应为之前出现过的所有 SG 值中最大者+1,我们不难发现质数们的 SG 值是递增的。
若 i 是一个合数,那么 i 肯定存在某个因子为前面出现过的质数,于是 SGi 最多为该质因子的 SG 值。又有质数们的 SG 值是递增的,那么 SGi 就应为最小质因子的 SG 值了。
我们发现合数必定不能产生新的 SG 值,它必定为其某个质因子的 SG 值。 于是第 k 个质数的 SG 值就是 k+1 了。 类似线性筛质数的原理,我们可以线性筛出 SG 值了。
下面讲解分石子问题:
NIM问题是博弈论经典问题,一个典型的组合游戏问题,很多游戏问题都可以规约到Nim游戏问题。Nim游戏问题是一个ICG(Impartial Combinatorial Games)问题;
ICG问题的特征是:
1.两个人参与,交替走棋;
2.可能的走法在一个有限的集合里选取;
3.游戏局面无后效性,未来与过去无关;
4.如果某选手无法走动,则判负;
Nim的理论
游戏状态只分两种:当前先手必胜,当前先手必败;前者称为N位置,后者称为P位置;
更为严谨的定义是:
终止状态是P位置;
能够移动到P位置的状态时N位置;
只能到N位置的状态时P位置;
简单地说,就是在这个博弈中,给定n堆物品,第i堆物品有Ai个。两名玩家同时行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者胜利。两人都采取最优策略,问先手能否必胜
定理:
NIM博弈先手必胜,并且仅当A1 xor A2 xor ... xor An!=0
证明:
所有的物品都被取光是一个必败局面(对方取走了最后一个物品,已经取得胜利),此时显然有A1 xor A2 xor ... xor An=0。
对于任意一个局面,若A1 xor A2 xor ... xor An = x != 0。设x的二进制最高位的1在k位,那么至少存在一堆石子Ai,它的第k位是1。显然Ai xor x < Ai,我们就从Ai堆中取走若干个石子,让它变成Ai xor x,就得到了一个各堆石子异或起来等于0的局面。
对于任意一个局面,如果A1 xor A2 xor ... xor An=0,那么无论如何取石子,得到的局面下各堆石子异或起来都不为0.可用反证法证明,假设Ai被取成了Ai0,并且A1 xor A2 xor ... xor Ai0 xor ... xor An = 0,由异或运算的消去律得Ai0=Ai,与“不能不取石子矛盾”
综上所述,再有数学归纳法可知,A1 xor A2 xor ... xor Ai0 xor ... xor An !=0,为必胜局面,一定存在必胜一种行动让对手陷入各堆石子都异或成0的情况。而在必败局面里,无论什么行动,都会让对手陷入各堆石子都异或成不为0的情况的必胜局面。
证毕
#include<cstdio>
using namespace std; int p[],f[],SG[];
int num,n,ass,t;
void get(){
for (int i=; i<; i++){
if(!f[i]) p[++num]=i,SG[i]=num+;
for (int j=; j<=num && (j== || i%(p[j-])) && p[j]*i<; j++)
f[p[j]*i]=-,SG[p[j]*i]=j+;
}
} int main()
{
SG[]=;
get();
scanf("%d",&t);
for(int i=; i<=t; i++,ass=)
{
int j;
scanf("%d",&j);
for(;j;j--)
{
int x;
scanf("%d",&x);
ass^=SG[x];
}
printf(ass?"Alice\n":"Bob\n");
}
}
[JZOJ4024] [佛山市选2015] 石子游戏 解题报告的更多相关文章
- 洛谷 P2197 【模板】nim游戏 解题报告
P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...
- 洛谷 P4301 [CQOI2013]新Nim游戏 解题报告
P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...
- 洛谷 P4279 [SHOI2008]小约翰的游戏 解题报告
P4279 [SHOI2008]小约翰的游戏 题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有\(n\)堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子 ...
- 洛谷 P1199 三国游戏 解题报告
P1199 三国游戏 题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有\(N\)位武将(\(N\)为 ...
- NOIP2008 普及组T3 传球游戏 解题报告-S.B.S.
题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...
- SDOI2017 BZOJ 4820 硬币游戏 解题报告
写在前面 此题网上存在大量题解,但本人太菜了,看了不下10篇均未看懂,只好自己冷静分析了.本文将严格详细地论述算法(避免一切意会和玄学),因此可能会比其它题解更加理论化一些,希望能对像我一样看了其它题 ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- [HEOI2016/TJOI2016]游戏 解题报告
[HEOI2016/TJOI2016]游戏 看起来就是个二分图匹配啊 最大化匹配是在最大化边数,那么一条边就代表选中一个坐标内的点 但是每一行不一定只会有一个匹配 于是把点拆开,按照'#'划分一下就好 ...
- 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告
P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...
随机推荐
- NHibernate3剖析:Mapping篇之集合映射基础(3):List映射
系列引入 NHibernate3.0剖析系列分别从Configuration篇.Mapping篇.Query篇.Session策略篇.应用篇等方面全面揭示NHibernate3.0新特性和应用及其各种 ...
- 【BZOJ3270】博物馆 概率DP 高斯消元
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- JDBC创建mysql连接池代码
1.底层实现类(DBConnection) package JDBC.JDBCPool.MyJDBCPool; import java.sql.Connection; import java.sql. ...
- Reroute Unassigned Shards——遇到主shard 出现的解决方法就是重新路由
Red Cluster! 摘自:http://blog.kiyanpro.com/2016/03/06/elasticsearch/reroute-unassigned-shards/ There a ...
- html 移动端关于长按图片弹出保存问题
在做html5项目的时候有个需求是要拖动一个图片,但是又不要用户长时间按着弹出保存框.首先想到的就是在点图片的时候阻止默认事件的发生: js停止冒泡· function myfn(e){ window ...
- GetExecutingAssembly() 和 GetCallingAssembly() 的区别
在TCX_1710项目代码的启动项目根目录路径下的Global.asax.cs配置文件中的MVCApplication类中的Application_Start()方法中,配置了项目启动时要加载的项目信 ...
- [转] CentOS 7 为firewalld添加开放端口及相关资料
转自http://www.cnblogs.com/hubing/p/6058932.html 1.运行.停止.禁用firewalld 启动:# systemctl start firewalld 查 ...
- nginx的rewrite规则
301跳转: server { listen 80; server_name www.xiaofan.com; return 301 https://$server_name$request_uri; ...
- 洛谷P1136 迎接仪式 动态规划
显然,这是一道动归题. 我们发现,每次交换时只可能交换不同的字母(交换同类字母显然是没有意义的).那么每次交换等同于将 111 个 "j""j""j& ...
- 获取鼠标经过处的标签的标签名和id
<script> var el = window.document.body; // 声明一个变量,默认值为body window.document.body.onmouseover = ...