http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html

求最小环

floyd求最小环
2011-08-14 9:42

1 定义:

通常来说最小环是针对有向图而言

从一个点出发,经过一条简单路径回到起点成为环.图的最小环就是所有环中长度最小的.

2.怎样求最小环呢?

1传统的解决方法(dijkstra):

        任意一个环的权值,我们都可以看成两个有边相连的结点i、j的直接距离加上i、j间不包含边(边i->j)的最短路径。求最短路径我们第一个想到的就是Dijkstra算法。而Dijkstra所求的是一个点到所有点的最短距离。用Dijkstra所求的i、j的最短距离一定是i、j的直接距离(如果i,j连通),所以我们需要先将i、j的边从图中删除(若i,j不连通,则不用删除),再用Dijkstra求新图中i、j的最短距离即可。所以我们每次在图中选取一条边,把它从图中删掉.然后对删掉的那条边所对应的2点进行Dijkstra,也就是m次Dijkstra。

2.floyd求最小环:

抛开Dijkstra算法,进而我们想到用Floyd算法。我们知道,Floyd算法在进行时会不断更新矩阵dist(k)。设dist[k,i,j]表示从结点i到结点j且满足所有中间结点,它们均属于集合{1,2,⋯ ,k}的一条最短路径的权。其中dist[0,i,j
]即为初始状态i到j的直接距离。对于一个给定的赋权有向图, 求出其中权值和最小的一个环。我们可以将任意一个环化成如下形式:u->k->v ->(x1-> x2-> ⋯ xm1)-> u(u与k、k与v都是直接相连的),其中v ->(x1-> 2-> ⋯ m)-> u是指v到u不经过k的一种路径。

在u,k,v确定的情况下,要使环权值最小, 则要求 (x1一>x2->⋯一>xm)->u路径权值最小.即要求其为v到u不经过k的最短路径,则这个经过u,k,v的环的最短路径就是:[v到u不包含k的最短距离]+dist[O,u,k]+dist[O,k,v]。我们用Floyd只能求出任意2点间满足中间结点均属于集合{1,2,⋯
,k}的最短路径,可是我们如何求出v到u不包含k的最短距离呢?

         现在我们给k加一个限制条件:k为当前环中的序号最大的节点(简称最大点)。因为k是最大点,所以当前环中没有任何一个点≥k,即所有点都<k。因为v->(x1->x2->......xm)->u属于当前环,所以x1,x2,⋯ ,xm<k,即x1,x2.⋯。xm≤k一1。这样,v到u的最短距离就可以表示成dist[k一1 ,u,v]。dist[k一1,v,u]表示的是从v到u且满足所有中间结点均属于集合{1,2,⋯
,k一1}的一条最短路径的权。接下来,我们就可以求出v到u不包含k的最短距离了。这里只是要求不包含k,而上述方法用的是dist[k一1,v,u],求出的路径永远不会包含k+l,k+2,⋯ 。万一所求的最小环中包含k+1,k+2,⋯ 怎么办呢?的确,如果最小环中包含比k大的节点,在当前u,k,v所求出的环显然不是那个最小环。然而我们知道,这个最小环中必定有一个最大点kO,也就是说,虽然当前k没有求出我们所需要的最小环,但是当我们从k做到kO的时候,这个环上的所有点都小于kO了.也就是说在k=kO时一定能求出这个最小环。我们用一个实例来说明:假设最小环为1—3—4—5—6—2—1。的确,在u=l,v=4,k=3时,k<6,dist[3,4,1]的确求出的不是4—5—6—2—1这个环,但是,当u=4,v=6,k=5或u=5,v=2,k=6时,dist[k,v,u]表示的都是这条最短路径.所以我们在Floyd以后,只要枚举u.v,k三个变量即可求出最小环。时间复杂度为O(n3)。我们可以发现,Floyd和最后枚举u,v,k三个变量求最小环的过程都是u,v,k三个变量,所以我们可以将其合并。这样,我们在k变量变化的同时,也就是进行Floyd算法的同时,寻找最大点为k的最小环。

3.模板

#include<algorithm>

using namespace std;

const int MAXN=105;

const int INF=10000000;

int dist[MAXN][MAXN],g[MAXN][MAXN];

int fa[MAXN][MAXN],path[MAXN];

int n,m,num,minc;

void Floyd()

{

     int i,j,k,p,tmp;

     minc=INF;

     for(k=1;k<=n;k++)

     {

         for(i=1;i<k;i++)

          for(j=i+1;j<k;j++)

          {

              tmp=dist[i][j]+g[i][k]+g[k][j];

              if(tmp<minc) //找到更优解

              {

                  minc=tmp;

                  num=0;

                  p=j;

                  while(p!=i) //逆向寻找前驱结点直到找到最前面的i,i->…->j

                  {

                        path[num++]=p;

                        p=fa[i][p];//fa[i][j]保存的不是k,而是fa[k][j].

                  }

                  path[num++]=i;

                  path[num++]=k;

              }

          }

         for(i=1;i<=n;i++)

          for(j=1;j<=n;j++)

          {

             tmp=dist[i][k]+dist[k][j];

             if(dist[i][j]>tmp)

             {

                 dist[i][j]=tmp;

                 fa[i][j]=fa[k][j];

             }

          }

     }

}

int main()

{

    int i,j,u,v,w;

    while(scanf("%d%d",&n,&m)!=EOF)

    {

          for(i=1;i<=n;i++)

           for(j=1;j<=n;j++)

           {

               g[i][j]=INF;

               dist[i][j]=INF;

               fa[i][j]=i;

           }

          while(m--)

          {

               scanf("%d%d%d",&u,&v,&w);

               w=min(g[u][v],w);          //处理重边

               g[u][v]=g[v][u]=dist[u][v]=dist[v][u]=w;

          }

          Floyd();

          if(minc==INF)

               printf("No solution.\n");

          else

          {

               printf("%d",path[0]);

               for(i=1;i<num;i++)

                   printf(" %d",path[i]);

               printf("\n");

          }

    }

    system("pause");

    return 0;

}

floyd求最小环 模板的更多相关文章

  1. 算法复习——floyd求最小环(poj1734)

    题目: 题目描述 N 个景区,任意两个景区之间有一条或多条双向的路来连接,现在 Mr.Zeng 想找一条旅游路线,这个路线从A点出发并且最后回到 A 点,假设经过的路线为 V1,V2,....VK,V ...

  2. 弗洛伊德Floyd求最小环

    模板: #include<bits/stdc++.h> using namespace std; ; const int INF = 0xffffff0; ]; void Solve(in ...

  3. 2017"百度之星"程序设计大赛 - 资格赛【1001 Floyd求最小环 1002 歪解(并查集),1003 完全背包 1004 01背包 1005 打表找规律+卡特兰数】

    度度熊保护村庄 Accepts: 13 Submissions: 488 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...

  4. Floyd求最小环!(转载,非原创) 附加习题(原创。)HDU-1599

    //Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵 int mincircle = infinity; Dist = Graph; ;k<nVe ...

  5. 2018.09.15 hdu1599find the mincost route(floyd求最小环)

    传送门 floyd求最小环的板子题目. 就是枚举两个相邻的点求最小环就行了. 代码: #include<bits/stdc++.h> #define inf 0x3f3f3f3f3f3f ...

  6. 【BZOJ 1027】 (凸包+floyd求最小环)

    [题意] 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金 ...

  7. CF 1206D - Shortest Cycle Floyd求最小环

    Shortest Cycle 题意 有n(n <= 100000)个数字,两个数字间取&运算结果大于0的话连一条边.问图中的最小环. 思路 可以发现当非0数的个数很大,比如大于200时, ...

  8. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  9. BZOJ_1027_[JSOI2007]_合金_(计算几何+Floyd求最小环)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1027 共三种金属,\(m\)种材料,给出每种材料中三种金属的占比. 给出\(n\)种合金的三种 ...

随机推荐

  1. 关于FrameBuffer【转】

    本文转载自:http://blog.csdn.net/ganxingming/article/details/764482 一.FrameBuffer的原理 FrameBuffer 是出现在 2.2. ...

  2. 修改input:file样式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  3. hdoj--5619--Jam's store(最小费用最大流)

    Jam's store Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

  4. 第14课 SourceTree程序操作介绍

    http://www.atlassian.com/software/sourcetree/overview https://www.microsoft.com/net/framework/versio ...

  5. sql将一个表中的数据插入到另一个表中

    sql将一个表中的数据插入到另一个表中 列名不一定要相同,只要你在HH中列出要插入列的列表跟select   from   mm表中的选择的列的列表一一对应就可以了,当然两边的数据类型应该是兼容的.  ...

  6. OI知识点

  7. mySQL用代码添加表格内容 删除数据方法

    通过代码对表格内容操作: 1.添加数据insert into Info values('p009','张三',1,'n001','2016-8-30 12:9:8') ; 给特定的列添加数据inser ...

  8. for 循环练习题

    X3 * 6528 = 3X * 8256X为一个数字 填入一个数字 使等式成立 for (var x=1;x<=9&&x>0;x++) { if ((x*10+3)*65 ...

  9. Sql语句优化-查询两表不同行NOT IN、NOT EXISTS、连接查询Left Join

    在实际开发中,我们往往需要比较两个或多个表数据的差别,比较那些数据相同那些数据不相同,这时我们有一下三种方法可以使用:1. IN或NOT IN,2. EXIST或NOTEXIST,3.使用连接查询(i ...

  10. C#快速获取指定网页源码的几种方式,并通过字符串截取函数 或 正则 取指定内容(IP)

    //只获取网页源码开始到标题位目的进行测试 //第一种方式经过测试,稍微快点 string url = "http://www.ip.cn"; HttpWebRequest req ...