luogu P4238 多项式求逆 (模板题、FFT)
手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718
题目链接: https://www.luogu.org/problemnew/show/P4238
题意: 给定\(n\)次多项式\(A(x)\), 求\(n\)次多项式\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^n)\)
题解:
DFT,每个数对\(998244353\)求逆元。IDFT回来。
发现,错了。
为什么呢?
因为要对\(x^n\)取模。
例如,\(1-x\)在模\(x^2\)意义下的逆元是\(1+x\), 但是在实际上逆元是\(1+x+x^2+x^3+...\), 是无穷和式。
所以此路不通。
考虑求解多项式问题的常用方法——分治法。
设已求\(B_0(x)\)满足\(B_0(x)A(x)\equiv 1(\mod x^n)\), 现要求\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^{2n})\)
显然有\(B(x)-B_0(x)\equiv 0(\mod x^n)\)
为了凑出\(x^{2n}\)两边平方得
\(B^2(x)-2B_0(x)B(x)+B_0^2(x)\equiv 0(\mod x^{2n})\)
如何求\(B\)呢?因为\(A(x)B(x)\equiv 0(\mod x^{2n})\), 我们将式子两边同乘\(A(x)\)
\(A(x)B(x)B(x)-2B_0(x)A(x)B(x)+A(x)B_0^2(x)\equiv 0(\mod x^{2n})\)
\(B(x)\equiv 2B_0(x)-A(x)B_0^2(x) (\mod x^{2n})\)
右边的式子FFT计算即可。
时间复杂度?
\(T(n)=T(\frac{n}{2})+O(n\log n)\)
\(T(n)=O(n\log n)\).
常数?首先隐藏在递归复杂度背后有一个\(2\)倍常数。
然后我们把两个多项式相乘需要\(3\)次FFT, 三个就要\(6\)次。
因此常数为\(12\)倍。
如何优化?
\(IDFT(DFT(IDFT(DFT(A)\times DFT(B_0)))\times DFT(B_0))\)
变成\(IDFT(DFT(A)\times DFT^2(B_0)\)
\(3\)次即可!
常数变为\(6\)倍。
UPD: 关于这里的常数问题: 因为我递归里DFT的范围是\(2n\),最终的复杂度是\(T(2n) = 6(2n)\log (2n)\), 因此我认为应为\(12\)倍常数。
空间?空间复杂度\(O(n)\), 但是要开\(4d\)的数组,其中\(d\)是\(>n\)的最小的\(2\)的幂。
代码
因为FFT数组清零等原因代码(对我来说)很难写。
贴一下我刚刚写的版本吧,还算是比较简单。
(话说怎么CSDN突然傲娇了啊。。缩进变成1格??)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
#define ldouble long double
#define uint unsigned int
#define ullong unsigned long long
#define udouble unsigned double
#define uldouble unsigned long double
#define modinc(x) {if(x>=P) x-=P;}
#define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define piiii pair<pair<int,int>,pair<int,int> >
#define pli pair<llong,int>
#define pll pair<llong,llong>
#define Memset(a,x) {memset(a,x,sizeof(a));}
using namespace std;
const int N = 1<<19;
const int P = 998244353;
const int LGN = 19;
const int G = 3;
llong a[N+3];
llong b[N+3];
llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3];
int id[N+2];
int n;
void initid(int _len)
{
id[0] = 0;
for(int i=1; i<(1<<_len); i++) id[i] = (id[i>>1]>>1)|((i&1)<<(_len-1));
}
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i))
{
y-=(1ll<<i); ret = ret*cur%P;
}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
void ntt(int dgr,int coe,llong poly[],llong ret[])
{
int len = 0; for(int i=0; i<=LGN; i++) if((1<<i)==dgr) {len = i; break;}
initid(len); for(int i=0; i<dgr; i++) ret[i] = 0ll;
for(int i=0; i<dgr; i++) ret[i] = poly[i];
for(int i=0; i<dgr; i++) if(i<id[i]) swap(ret[i],ret[id[i]]);
for(int i=1; i<=(dgr>>1); i<<=1)
{
llong tmp = quickpow(G,(P-1)/(i<<1));
if(coe==-1) tmp = mulinv(tmp);
for(int j=0; j<dgr; j+=(i<<1))
{
llong expn = 1ll;
for(int k=0; k<i; k++)
{
llong x = ret[j+k],y = (expn*ret[j+i+k])%P;
ret[j+k] = x+y; modinc(ret[j+k]);
ret[j+i+k] = x-y+P; modinc(ret[j+i+k]);
expn = (expn*tmp)%P;
}
}
}
}
void polyinv(int dgr,llong poly[],llong ret[])
{
for(int i=0; i<dgr; i++) ret[i] = 0ll;
ret[0] = mulinv(poly[0]);
for(int i=1; i<=(dgr>>1); i<<=1)
{
for(int j=0; j<(i<<2); j++) tmp1[j] = j<i ? ret[j] : 0ll;
for(int j=0; j<(i<<2); j++) tmp2[j] = j<(i<<1) ? poly[j] : 0ll;
ntt((i<<2),1,tmp1,tmp3); ntt((i<<2),1,tmp2,tmp4);
for(int j=0; j<(i<<2); j++) tmp5[j] = tmp3[j]*tmp3[j]%P*tmp4[j]%P;
ntt((i<<2),-1,tmp5,tmp6); llong tmp = mulinv(i<<2);
for(int j=0; j<(i<<2); j++) tmp6[j] = tmp6[j]*tmp%P;
for(int j=0; j<(i<<1); j++) ret[j] = (tmp1[j]+tmp1[j]-tmp6[j]+P)%P;
}
}
int main()
{
scanf("%d",&n); int dgr = 1; while(dgr<=n) dgr<<=1;
for(int i=0; i<n; i++) scanf("%lld",&a[i]);
polyinv(dgr,a,b);
for(int i=0; i<n; i++) printf("%lld ",b[i]);
return 0;
}
luogu P4238 多项式求逆 (模板题、FFT)的更多相关文章
- [模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...
- hdu 5730 Shell Necklace——多项式求逆+拆系数FFT
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- 【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\fra ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)
手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...
- FFT模板 生成函数 原根 多项式求逆 多项式开根
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...
- 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)
传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
随机推荐
- SIS
故障: 1.2017-12-14 发现前期测试的钉钉切换校区功能有遗留问题,第二个校区进行考勤后,在考勤记录中编辑考勤记录,出现无权限 原因:编辑考勤记录,传的schoolid不是原先的school ...
- MySQL desc作用
MySQL中默认排序是acs(可省略):从小到大 desc :从大到小,也叫倒序排列.
- Java 获取随机日期
/** * 获取随机日期 * @param beginDate 起始日期 * @param endDate 结束日期 * @return */ public static Date randomDat ...
- javase - 点餐系统
public class OrderMsg { public static void main(String[] args) throws Exception { /** * 订餐人姓名.选择菜品.送 ...
- fixed和absolute
fixed是相对于浏览器窗口固定 absolute是相对于整体网页固定.(整体网页包括所有的内容,包含右侧滑动条滑动所能看到的内容)
- Android+Jquery Mobile学习系列(5)-SQLite数据库
SQLite是轻量级的.嵌入式的.关系型数据库,目前已经在iPhone.Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠. 因为Android已经集成了SQLit ...
- poj2594——最小路径覆盖
Description Have you ever read any book about treasure exploration? Have you ever see any film about ...
- 【POJ 2449】 Remmarguts' Date
[题目链接] http://poj.org/problem?id=2449 [算法] A*(启发式搜索) 首先,求第k短路可以用优先队列BFS实现,当T第k次入队时,就求得了第k短路,但是,这种做法的 ...
- Newtonsoft.Json 序列化日期问题解决
上代码 其中的使用方法和UserInfo实体对象就不贴代码了. /// <summary> /// 把对象转成json字符串 /// </summary> /// <pa ...
- ecshop类的解析2 json_encode和json_decode的具体实现
在看ecshop源码时,看到json这个类,研究了一下,它是为了兼容低版本php而做出的类,是对php的数据和json转换时使用的. encode和decode函数是对json的操作,对应json_e ...