手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718

题目链接: https://www.luogu.org/problemnew/show/P4238

题意: 给定\(n\)次多项式\(A(x)\), 求\(n\)次多项式\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^n)\)

题解:

DFT,每个数对\(998244353\)求逆元。IDFT回来。

发现,错了。

为什么呢?

因为要对\(x^n\)取模。

例如,\(1-x\)在模\(x^2\)意义下的逆元是\(1+x\), 但是在实际上逆元是\(1+x+x^2+x^3+...\), 是无穷和式。

所以此路不通。

考虑求解多项式问题的常用方法——分治法。

设已求\(B_0(x)\)满足\(B_0(x)A(x)\equiv 1(\mod x^n)\), 现要求\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^{2n})\)

显然有\(B(x)-B_0(x)\equiv 0(\mod x^n)\)

为了凑出\(x^{2n}\)两边平方得

\(B^2(x)-2B_0(x)B(x)+B_0^2(x)\equiv 0(\mod x^{2n})\)

如何求\(B\)呢?因为\(A(x)B(x)\equiv 0(\mod x^{2n})\), 我们将式子两边同乘\(A(x)\)

\(A(x)B(x)B(x)-2B_0(x)A(x)B(x)+A(x)B_0^2(x)\equiv 0(\mod x^{2n})\)

\(B(x)\equiv 2B_0(x)-A(x)B_0^2(x) (\mod x^{2n})\)

右边的式子FFT计算即可。

时间复杂度?

\(T(n)=T(\frac{n}{2})+O(n\log n)\)

\(T(n)=O(n\log n)\).

常数?首先隐藏在递归复杂度背后有一个\(2\)倍常数。

然后我们把两个多项式相乘需要\(3\)次FFT, 三个就要\(6\)次。

因此常数为\(12\)倍。

如何优化?

\(IDFT(DFT(IDFT(DFT(A)\times DFT(B_0)))\times DFT(B_0))\)

变成\(IDFT(DFT(A)\times DFT^2(B_0)\)

\(3\)次即可!

常数变为\(6\)倍。

UPD: 关于这里的常数问题: 因为我递归里DFT的范围是\(2n\),最终的复杂度是\(T(2n) = 6(2n)\log (2n)\), 因此我认为应为\(12\)倍常数。

空间?空间复杂度\(O(n)\), 但是要开\(4d\)的数组,其中\(d\)是\(>n\)的最小的\(2\)的幂。

代码

因为FFT数组清零等原因代码(对我来说)很难写。

贴一下我刚刚写的版本吧,还算是比较简单。

(话说怎么CSDN突然傲娇了啊。。缩进变成1格??)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
#define ldouble long double
#define uint unsigned int
#define ullong unsigned long long
#define udouble unsigned double
#define uldouble unsigned long double
#define modinc(x) {if(x>=P) x-=P;}
#define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define piiii pair<pair<int,int>,pair<int,int> >
#define pli pair<llong,int>
#define pll pair<llong,llong>
#define Memset(a,x) {memset(a,x,sizeof(a));}
using namespace std; const int N = 1<<19;
const int P = 998244353;
const int LGN = 19;
const int G = 3;
llong a[N+3];
llong b[N+3];
llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3];
int id[N+2];
int n; void initid(int _len)
{
id[0] = 0;
for(int i=1; i<(1<<_len); i++) id[i] = (id[i>>1]>>1)|((i&1)<<(_len-1));
} llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i))
{
y-=(1ll<<i); ret = ret*cur%P;
}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);} void ntt(int dgr,int coe,llong poly[],llong ret[])
{
int len = 0; for(int i=0; i<=LGN; i++) if((1<<i)==dgr) {len = i; break;}
initid(len); for(int i=0; i<dgr; i++) ret[i] = 0ll;
for(int i=0; i<dgr; i++) ret[i] = poly[i];
for(int i=0; i<dgr; i++) if(i<id[i]) swap(ret[i],ret[id[i]]);
for(int i=1; i<=(dgr>>1); i<<=1)
{
llong tmp = quickpow(G,(P-1)/(i<<1));
if(coe==-1) tmp = mulinv(tmp);
for(int j=0; j<dgr; j+=(i<<1))
{
llong expn = 1ll;
for(int k=0; k<i; k++)
{
llong x = ret[j+k],y = (expn*ret[j+i+k])%P;
ret[j+k] = x+y; modinc(ret[j+k]);
ret[j+i+k] = x-y+P; modinc(ret[j+i+k]);
expn = (expn*tmp)%P;
}
}
}
} void polyinv(int dgr,llong poly[],llong ret[])
{
for(int i=0; i<dgr; i++) ret[i] = 0ll;
ret[0] = mulinv(poly[0]);
for(int i=1; i<=(dgr>>1); i<<=1)
{
for(int j=0; j<(i<<2); j++) tmp1[j] = j<i ? ret[j] : 0ll;
for(int j=0; j<(i<<2); j++) tmp2[j] = j<(i<<1) ? poly[j] : 0ll;
ntt((i<<2),1,tmp1,tmp3); ntt((i<<2),1,tmp2,tmp4);
for(int j=0; j<(i<<2); j++) tmp5[j] = tmp3[j]*tmp3[j]%P*tmp4[j]%P;
ntt((i<<2),-1,tmp5,tmp6); llong tmp = mulinv(i<<2);
for(int j=0; j<(i<<2); j++) tmp6[j] = tmp6[j]*tmp%P;
for(int j=0; j<(i<<1); j++) ret[j] = (tmp1[j]+tmp1[j]-tmp6[j]+P)%P;
}
} int main()
{
scanf("%d",&n); int dgr = 1; while(dgr<=n) dgr<<=1;
for(int i=0; i<n; i++) scanf("%lld",&a[i]);
polyinv(dgr,a,b);
for(int i=0; i<n; i++) printf("%lld ",b[i]);
return 0;
}

luogu P4238 多项式求逆 (模板题、FFT)的更多相关文章

  1. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  2. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  3. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  4. 【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)

    [BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\fra ...

  5. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

  6. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  7. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

  8. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

  9. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

随机推荐

  1. oc44--多对象内存管理

    // Room.h #import <Foundation/Foundation.h> @interface Room : NSObject @property int no;// 房间号 ...

  2. bazel编译tensorflow 生成libtensorflow_inference.so 和 libandroid_tensorflow_inference_java.jar

    bazel build -c opt //tensorflow/contrib/android:libtensorflow_inference.so --crosstool_top=//externa ...

  3. 【POJ 3460】 Booksort

    [题目链接] http://poj.org/problem?id=3460 [算法] IDA* 注意特判答案为0的情况 [代码] #include <algorithm> #include ...

  4. bzoj 3743 [ Coci 2015 ] Kamp —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 一开始想到了树形DP,处理一下子树中的最小值,向上的最小值,以及子树中的最长路和向上的 ...

  5. Error-MySQL:2005 - Unknown MySQL server host 'localhost'(0)

    ylbtech-Error-MySQL:2005 - Unknown MySQL server host 'localhost'(0) 1.返回顶部 1. 今天在外面开navicat for mysq ...

  6. 如何在ashx处理页中获取Session值

    本文章摘自:http://www.cnblogs.com/vihone/archive/2010/06/04/1751490.html 在一般事务处理页面,可以轻松的得到 Request,Respon ...

  7. java的random生成某个范围内的随机数

    import java.util.Random; /** * @author HP * @date 2019/4/16 */ public class randomTest { public stat ...

  8. 基于Myeclipse+Axis2的WebService开发实录

    最近开始学习了下在Myeclipse开发工具下基于WebSerivce的开发,下面将相关相关关键信息予以记录 Myeclipse的安装,本文以Myeclipse2014-blue为开发环境,相关配置执 ...

  9. weui&flexible布局

    1.weui 一开始以为只能用于小程序中,原来分两种:weui-wxss-master和weui-master.真的是强大的不得了,把设计好的样式和功能封装.然后分类,有明确的层级和逻辑,感动!!值得 ...

  10. 【转载】cocos2dx 中 Android NDK 加载动态库的问题

     原文地址:http://blog.csdn.net/sozell/article/details/10551309 cocos2dx 中 Android NDK 加载动态库的问题 闲聊 最近在接入各 ...