Description

给定N个点以及每个点的权值,要你处理接下来的M个操作。
操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。
保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。

Input

第1行两个整数,分别为N和M,代表点数和操作数。
第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。
1<=N,M<=300000

Output

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

Sample Input

3 3
1
2
3
1 1 2
0 1 2
0 1 1

Sample Output

3
1

解题思路:

这是LCT很好的模板。
主要难点是处理一下路径权值,和判断两个点是否联通(以防重边)
路径权值:单独将x到y的路径提取(split)Splay维护链的时候在将节点处权值上传,最后查值就好
判断有无x到y的边:将x到y的路径提取,若直接连接无中间值就是有边。
代码:
 #include<cstdio>
#include<cstring>
#include<algorithm>
#define lll tr[spc].ch[0]
#define rrr tr[spc].ch[1]
#define ls ch[0]
#define rs ch[1]
const int N=;
struct trnt{
int ch[];
int lzt;
int fa;
int val;
int sum;
bool anc;
}tr[N];
int n,m;
int cnt;
bool whc(int spc)
{
return tr[tr[spc].fa].rs==spc;
}
void pushup(int spc)
{
tr[spc].sum=tr[lll].sum^tr[rrr].sum^tr[spc].val;
return ;
}
void trr(int spc)
{
if(!spc)
return ;
std::swap(lll,rrr);
tr[spc].lzt^=;
return ;
}
void pushdown(int spc)
{
if(tr[spc].lzt)
{
trr(lll);
trr(rrr);
tr[spc].lzt=;
}
return ;
}
void recal(int spc)
{
if(!tr[spc].anc)
recal(tr[spc].fa);
pushdown(spc);
}
void rotate(int spc)
{
int f=tr[spc].fa;
bool k=whc(spc);
tr[f].ch[k]=tr[spc].ch[!k];
tr[spc].ch[!k]=f;
if(tr[f].anc)
{
tr[f].anc=false;
tr[spc].anc=true;
}else
tr[tr[f].fa].ch[whc(f)]=spc;
tr[spc].fa=tr[f].fa;
tr[f].fa=spc;
tr[tr[f].ch[k]].fa=f;
pushup(f);
pushup(spc);
}
void splay(int spc)
{
recal(spc);
while(!tr[spc].anc)
{
int ft=tr[spc].fa;
if(tr[ft].anc)
{
rotate(spc);
return ;
}
if(whc(spc)^whc(ft))
rotate(spc);
else
rotate(ft);
rotate(spc);
}
return ;
}
void access(int spc)
{
int lsts=;
while(spc)
{
splay(spc);
tr[rrr].anc=true;
tr[lsts].anc=false;
rrr=lsts;
pushup(spc);
lsts=spc;
spc=tr[spc].fa;
}
return ;
}
void Mtr(int spc)
{ access(spc);
splay(spc);
trr(spc);
return ;
}
int spmrt(int spc)
{
access(spc);
splay(spc);
while(lll)
{
pushdown(spc);
spc=lll;
}
return spc;
}
void split(int x,int y)
{
Mtr(x);
access(y);
splay(y);
}
void Link(int x,int y)
{
Mtr(x);
if(spmrt(y)!=x)
tr[x].fa=y;
return ;
}
void Cut(int x,int y)
{
Mtr(x);
if(spmrt(y)==x&&tr[x].fa==y&&!tr[y].rs)
{
tr[x].anc=;
tr[y].ls=;
tr[x].fa=;
pushup(y);
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&tr[i].val);
tr[i].anc=true;
}
while(m--)
{
int cmd,x,y;
scanf("%d%d%d",&cmd,&x,&y);
if(cmd==)
{
split(x,y);
printf("%d\n",tr[y].sum);
}
if(cmd==)
Link(x,y);
if(cmd==)
Cut(x,y);
if(cmd==)
{
splay(x);
tr[x].val=y;
pushup(x);
}
}
return ;
}

BZOJ3282: Tree (LCT模板)的更多相关文章

  1. [bzoj3282]Tree (lct)

    昨天看了一天的lct..当然幸好最后看懂了(也许吧..) 论善良学长的重要性T_T,老司机带带我! 这题主要是删边的时候还要判断一下..蒟蒻一开始天真的以为存在的边才能删结果吃了一发wa... 事实是 ...

  2. LuoguP3690 【模板】Link Cut Tree (动态树) LCT模板

    P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...

  3. [洛谷P1501] [国家集训队]Tree II(LCT模板)

    传送门 这是一道LCT的板子题,说白了就是在LCT上支持线段树2的操作. 所以我只是来存一个板子,并不会讲什么(再说我也不会,只能误人子弟2333). 不过代码里的注释可以参考一下. Code #in ...

  4. LCT模板

    之前一直用的LCT模板,因为其实个人对LCT和Splay不是很熟,所以用起来总觉得略略的坑爹,过了一段时间就忘了,但事实上很多裸的LCT要改的东西是不多的,所以今天写了些注释,以后可能套起模板来会得心 ...

  5. HDU 5002 Tree LCT 区间更新

    Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  6. Link-Cut Tree(LCT)&TopTree讲解

    前言: Link-Cut Tree简称LCT是解决动态树问题的一种数据结构,可以说是我见过功能最强大的一种树上数据结构了.在此与大家分享一下LCT的学习笔记.提示:前置知识点需要树链剖分和splay. ...

  7. HDU5002 Tree(LCT)

    今天做了一道LCT模板题之后忽然间好像记起来LCT的模板怎么用了,于是就把上次网络赛的一道LCT补一下.典型的删边,加边操作,还有路径加和路径set为一个数.维护的是路径第二大以及它有多少个,后来想想 ...

  8. LCT 模板及套路总结

    这一个月貌似已经考了无数次\(LCT\)了..... 保险起见还是来一发总结吧..... A. LCT 模板 \(LCT\) 是由大名鼎鼎的 \(Tarjan\) 老爷发明的. 主要是用来维护树上路径 ...

  9. 洛谷P3690 [模板] Link Cut Tree [LCT]

    题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...

随机推荐

  1. HDU 1520 Anniversary party(DFS或树形DP)

    Problem Description There is going to be a party to celebrate the 80-th Anniversary of the Ural Stat ...

  2. Android开发之蓝牙(Bluetooth)操作(二)--修改本机蓝牙设备的可见性,并扫描周围可用的蓝牙设备

    版权声明:本文为博主原创文章,未经博主允许不得转载. 一. 修改本机蓝牙设备的可见性 二. 扫描周围可用的蓝牙设备 Eg: 一.  清单文件AdroidManifest.xml: <?xml v ...

  3. Chromium Graphics : GPU Accelerated Compositing in Chrome

    GPU Accelerated Compositing in Chrome Tom Wiltzius, Vangelis Kokkevis & the Chrome Graphics team ...

  4. xfce4 + docky ,docky 上面那透明的一条黑色横线去掉方法

    在安装完Debian 9 + xfce4桌面后 ,添加docky启动后,会在docky 上面有一条黑色横线看起来非常不舒服. 去掉方法:设置管理器->窗口管理器微调->合成器->取消 ...

  5. cp---复制文件

    cp命令用来将一个或多个源文件或者目录复制到指定的目的文件或目录.它可以将单个源文件复制成一个指定文件名的具体的文件或一个已经存在的目录下.cp命令还支持同时复制多个文件,当一次复制多个文件时,目标文 ...

  6. TCP简单说(下)

    本文在Creative Commons许可证下发布 TCP的RTT算法 从前面的TCP重传机制我们知道Timeout的设置对于重传非常重要. 设长了,重发就慢,丢了老半天才重发,没有效率,性能差: 设 ...

  7. 手把手教你用vue-cli构建一个简单的路由应用

    上一章说道:十分钟上手-搭建vue开发环境(新手教程)https://www.jianshu.com/p/0c6678671635 开发环境搭建好之后,那么开始新添加一些页面,构建最基本的vue项目, ...

  8. RHEL7.1安装VNC

    1.安装包 yum install vnc* -y 2.创建password vncserver 3.创建參数文件 [root@single ~]# cp /lib/systemd/system/vn ...

  9. 关于Shiro的退出请求是如何关联到登录请求的思考

    一.结论 先给出结论,是因为本身是很简单的道理.假设我们没有使用任何认证授权的框架,就简单的使用Cookie和HttpSession,那么用户登录后的每一个请求是如何关联上这个用户的呢?答案很简单,由 ...

  10. JavaScript提高:006:ASP.NET使用easyUI TABS标签updatepanel

    前文使用了easyui的tab标签.切换问题,使用了session保存当前选中页,然后页面总体刷新时再切换至上次保存页码.那么使用updatepanel后,这个问题就非常好攻克了.http://blo ...