题目大意

  给出一个有$n(n\leq 500)$个节点的无向图,一个满足条件的点集$V$会使得对于图中的每一个节点$u$,满足路径起点为$u$终点$v\in V$的路径集合$P_u$中总存在至少两条路径$p_1,p_2$,使得该两条路径除了起点外没有交集(终点也不同)。输出$|V|$的最小值,以及$|V|$最小时$V$的种类数。

题解

  对于一个点双连通分量中的任意一对点都有两条路径到达对方,所以我们从点双连通分量入手。

  特殊情况:当一个点双连通分量中没有割点时,根据题目要求,这个点双连通分量中需要有两个点属于$V$。

  若把所有点双连通分量缩点形成一棵树,那么树必定会有叶子节点。所以我们考虑当一个点双连通分量有一个割点时该怎么办。考虑到去掉的点是割点的情况,每个叶子双联通分量内必需有一个点$t$属于$V$;若去掉的点位于所在连通分量以外的部分,双连通分量内的点都与$t$连通;若去掉的点在双连通分量以内且不属于割点,那么双连通分量内的其它点到割点必然存在一条路径,而割点必然与其它叶子双连通分量相连通,那里有属于$V$的点。因此,所有叶子双连通分量内必须有且只有一个点属于$V$。

  若一个点双连通分量不是叶子,那么无论去掉哪个点,这个点双连通分量总与叶子连通,那里有属于$V$的点,所以这里的点双连通分量没有属于$V$的点。

  关于根节点的特判,将根节点所在的点双连通分量记录下来,在Dfs外面对根节点进行特殊处理即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
#include <cassert>
using namespace std; const int MAX_NODE = 510; struct Node
{
vector<Node*> Next;
int DfsN, Low;
bool IsCut;
}_nodes[MAX_NODE];
stack<Node*> St; struct Block
{
int NodeCnt, CutCnt;
}_blocks[MAX_NODE];
int BlockCnt;
int DfsCnt;
vector<Block*> RootIn; void DeStack(Node *end, Node *add)
{
BlockCnt++;
Node *temp;
do {
temp = St.top();
St.pop();
_blocks[BlockCnt].NodeCnt++;
_blocks[BlockCnt].CutCnt += temp->IsCut;
} while (temp != end);
_blocks[BlockCnt].NodeCnt++;
_blocks[BlockCnt].CutCnt += add->IsCut;
} int Dfs(Node *cur)
{
cur->Low = cur->DfsN = ++DfsCnt;
St.push(cur);
int cnt = 0;
for (int i = 0; i < cur->Next.size(); i++)
{
if (!cur->Next[i]->DfsN)
{
Dfs(cur->Next[i]);
cur->Low = min(cur->Low, cur->Next[i]->Low);
if (cur->Next[i]->Low >= cur->DfsN)
{
cnt++;
if (cur != _nodes + 1)
cur->IsCut = true;
DeStack(cur->Next[i], cur);
if (cur == _nodes + 1)
RootIn.push_back(_blocks + BlockCnt);
}
}
else
cur->Low = min(cur->Low, cur->Next[i]->DfsN);
}
return cnt;
} void Clear()
{
for (int i = 1; i < MAX_NODE; i++)
{
_nodes[i].Low = _nodes[i].DfsN = _nodes[i].IsCut = 0;
_nodes[i].Next.clear();
_blocks[i].CutCnt = _blocks[i].NodeCnt = 0;
}
RootIn.clear();
BlockCnt = 0;
DfsCnt = 0;
} int main()
{
int totEdge, caseCnt = 0;
while (scanf("%d", &totEdge) && totEdge)
{
Clear();
for (int i = 1; i <= totEdge; i++)
{
int u, v;
scanf("%d%d", &u, &v);
_nodes[u].Next.push_back(_nodes + v);
_nodes[v].Next.push_back(_nodes + u);
}
int rootBlockCnt = Dfs(_nodes + 1);
if (rootBlockCnt > 1)
{
_nodes[1].IsCut = true;
for (int i = 0; i < RootIn.size(); i++)
RootIn[i]->CutCnt++;
}
while (!St.empty())
St.pop();
int exitCnt = 0;
long long solCnt = 1;
for (int i = 1; i <= BlockCnt; i++)
{
if (_blocks[i].CutCnt == 0)
{
assert(BlockCnt == 1);
exitCnt = 2;
solCnt = (long long)_blocks[i].NodeCnt * (_blocks[i].NodeCnt - 1) / 2;
}
else if (_blocks[i].CutCnt == 1)
{
exitCnt++;
solCnt *= (_blocks[i].NodeCnt - _blocks[i].CutCnt);
}
}
printf("Case %d: %d %lld\n", ++caseCnt, exitCnt, solCnt);
}
return 0;
}

  

luogu3225 [HNOI2012]矿场搭建的更多相关文章

  1. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  2. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  3. 洛谷 P3225 [HNOI2012]矿场搭建 解题报告

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  4. 【BZOJ】2730: [HNOI2012]矿场搭建【Tarjan找割点】【分联通块割点个数】

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3230  Solved: 1540[Submit][Stat ...

  5. Tarjan 点双+割点+DFS【洛谷P3225】 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  6. [luoguP3325][HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  7. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  8. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

  9. BZOJ 2730:[HNOI2012]矿场搭建(割点+连通块)

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

随机推荐

  1. 原生js实现简单的焦点图效果

    用到一些封装好的运动函数,主要是定时器 效果为图片和图片的描述定时自动更换 <!DOCTYPE html> <html> <head> <meta chars ...

  2. [Windows Server 2012] 手工破解MySQL密码

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:破解MySQL ...

  3. linux杀掉某个进程的脚本

    https://www.cnblogs.com/zeng1994/p/13a2c5a28e55dd3abc2c75a4fb80371a.html awk的说明: https://www.cnblogs ...

  4. (原创)HyperPacer使用技巧之集合点设置

    版权声明:本文为原创文章,转载请先联系并标明出处 性能测试中,我们可以模拟最真实的用户操作来建立性能模型,但是这种模拟是相对的.譬如12306网站春运开始后每一天都是高峰,这种高负载情况会持续一至两个 ...

  5. javascript 大数据处理方法

    随着前端的飞速发展,在浏览器端完成复杂的计算,支配并处理大量数据已经屡见不鲜.那么,如何在最小化内存消耗的前提下,高效优雅地完成复杂场景的处理,越来越考验开发者功力,也直接决定了程序的性能. 本文展现 ...

  6. 远程连接阿里云服务器ping不通ip解决方案

    搭建了阿里云服务器,发现本地ping不通,查看半天才发现,原来是在阿里云上的安全组少了些东西.  在出入方向上新建一个安全组,就可以搞定了.

  7. Burnside引理和polay计数 poj2409 Let it Bead

    题目描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ...

  8. [转]linux内存管理源码分析 - 页框分配器

    转自: http://www.cnblogs.com/tolimit/ 阅读之前,先敬原作者一杯! 分段和分页 先看一幅图 也就是我们实际中编码时遇到的内存地址并不是对应于实际内存上的地址,我们编码中 ...

  9. mapbox-gl 使用ArcGISServer 发布的栅格切片

    最近使用mapbox 进行数据化展现.刚好用到了超图平台在去三维系统,顺带就用超图平台发布了栅格切片,用来做底图,但是超图平台是试用的许可,栅格切片有SuperMap 的水印,实在不雅观. 在网上搜索 ...

  10. 针对mdadm的RAID1失效测试

    背景 对软RAID(mdadm)方式进行各个场景失效测试. 一.初始信息 内核版本: root@omv30:~# uname -a Linux omv30 4.18.0-0.bpo.1-amd64 # ...