本期内容 :

  • BatchDuration与 Process Time
  • 动态Batch Size

  Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢?

  例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration

就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素。

  

  使用BatchSize来适配我们的流处理程序 :

    线上的处理程序越来越重要,流入的数据规模越来越大的时候,传统的一台机器不能够容纳此刻流入的数据并处理此刻流入的数据,所以需要分

  布式。分布式的流处理程序其根源在于此1秒中流入的数据我们一台机器无法容纳且无法完成及时的处理,也就是大数据,更谈不上实时性处理和在

  线处理 。数据处理的过程中最重要问题是在不同的算子和工作负载对我们处理时间的影响以及这种影响是否是我们预期中的结果。

    目前有很多的计算框架,这些所有的计算框架有一个共同特征,就是在连续不断的流进来的一系列数据中使用MapReduce的思想去处理接收到的

  数据, MapReduce是一种思想,无论是Hadoop还是Spark都是MapReduce的思想实现,MapReduce的实现有一个很好的方面就是容错性,他有自

  己的一套完整的容错机制。流处理程序在具体处理线上数据的时候,借助MapReduce容错机制能够快速从错误中恢复的能力。

    构建一套稳定的处理程序,有很多维度需要去考虑,如实时性、波峰,如每秒处理1G的数据,突然一个波峰需要处理100T的数据,此时将如何处

  理,整个流处理应该怎样去应对这种情况?

    以往的流处理系统中,一种是流处理框架可以动态调整资源,如内存、CPU等资源。另外一种是在来不及处理时使用丢弃部分数据。那如何在保证

  数据的完整性的情况下,且数据一定会处理。如何应对现实突发的情况,如果直接调整内存、CPU等资源其代价非常大而且也不太好调整。

  Spark Streaming的处理模型是以Batch为模型然后不断的在Queue中把每个BatchDuration的数据进行排队:

  

    Spark Streaming的数据一批批的放在队列中,然后一个个的在集群中处理的,无论是数据本身还是元数据,Job都是以队列的方式获取信息来控制整

  个作业的运行。随着数据规模变的越来越大的时候,并不是简简单单的增加内存、CPU等硬件资源就可以的,因为很多时候并不是线性规律的变化。

  什么因素导致了Batch处理数据的延时:

    01、 接收数据并且把接收到的数据放到Batch待处理的队列中(也就是BatchSize会极大的影响其延时性)

    02、 等待时间

    03、 处理时间

  静态处理模型 :

  

    图中的虚线就是安全区域,安全区域就是数据流进来的速度能够及时在这个BatchDuration中被消化。对Reduce与Join的操作进行对比,不同的算子存在不同的

  线性规律,不是随着数据量的增加呈现线性的处理速度,流处理有很多因素影响 .

    一般使用几个BatchDuration进行流处理,直接配置一些参数,每隔10S中就有一个BatchDuration然后处理,这样的处理方式是不可取的。从上图可以看出,实

  际不是这样的,随着数据量的改变,原来的数据量运行很好,预期也有评估,如每秒处理100M的数据(单节点),使用线性方式评估在500M的时候是怎样的,然后就设

  置相对应的静态模型,是基于你现有的硬件资源(内存、CPU、网络),这样评估是不准确的,而且很难预测,因为当消费数据的容量的不同很难去预测其运行行为。

    在改变其数据rate时,状态有不稳定性,如果能够改变BatchSize的话其相对稳定,所以需要设计一种算法或者实现,不是去调整内存、CPU等硬件资源,而是调

  整其Batch的大小,当Batch足够小或者小得适当的时候,应该是个更好的思路,低延时、灵活性、通用性、简单性。

  

    要完成BatchSize的变化的不断的调整肯定需要对Job信息进行统计,动态的调整这个模式,这个模式就是配置相应的参数。随着处理的不断运行,在下一次运行

  之前看一下上次统计的信息,是否需要调整我们的模型,但是这样做会比较困难。因为会出现一些非线性的行为,把你认为的线性的资源改变一下就是可以的,处理

  规模不一样,处理算子不一样,有很多不可预测的因素,需要实现对BatchSize的动态调整。

  

Spark Streaming中动态Batch Size实现初探的更多相关文章

  1. Spark Streaming揭秘 Day21 动态Batch size实现初探(下)

    Spark Streaming揭秘 Day21 动态Batch size实现初探(下) 接昨天的描述,今天继续解析动态Batch size调整的实现. 算法 动态调整采用了Fix-point迭代算法, ...

  2. Spark Streaming揭秘 Day20 动态Batch size实现初探(上)

    Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机 ...

  3. Spark Streaming中的操作函数分析

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

  4. spark streaming中维护kafka偏移量到外部介质

    spark streaming中维护kafka偏移量到外部介质 以kafka偏移量维护到redis为例. redis存储格式 使用的数据结构为string,其中key为topic:partition, ...

  5. Spark Streaming中的操作函数讲解

    Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...

  6. 一文读懂神经网络训练中的Batch Size,Epoch,Iteration

    一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小, ...

  7. Spark Streaming中向flume拉取数据

    在这里看到的解决方法 https://issues.apache.org/jira/browse/SPARK-1729 请是个人理解,有问题请大家留言. 其实本身flume是不支持像KAFKA一样的发 ...

  8. spark streaming中使用flume数据源

    有两种方式,一种是sparkstreaming中的driver起监听,flume来推数据:另一种是sparkstreaming按照时间策略轮训的向flume拉数据. 最开始我以为只有第一种方法,但是尼 ...

  9. flink和spark Streaming中的Back Pressure

    Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure.Spark Strea ...

随机推荐

  1. Python 打印99乘法口诀表

    import string for x in xrange(1,10): for y in xrange(1,x+1): print string.ljust("%d*%d = " ...

  2. ffmpeg 和 SDL 的结合使用

    FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.采用LGPL或GPL许可证.它提供了录制.转换以及流化音视 频的完整解决方案.它包含了非常先进的音频/视频编解码库 ...

  3. NTP时间同步服务器设置

    一.Window Server设置 [服务器端设置]1) 修改注册表以下键值:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\ ...

  4. DB2 中文排序问题

    本地测试库中 代码集: GBK 数据库配置发行版级别 = 0x0c00 数据库发行版级别 = 0x0c00 数据库地域 = CN 数据库代码页 = 1386 数据库代码集 = GBK 数据库国家/地区 ...

  5. 利用ffmpeg给小视频结尾增加logo水印

    背景 1.app有类似微信拍摄小视频功能,时长上限8s,视频文件保存在第三方云存储,app直接上传,后端数据库只记录视频的存放地址. 2.最近一次功能迭代,增加了小视频下载功能,小视频有可能在别的社交 ...

  6. undefined reference to `_init'问题解决

    今天利用CDT 的eclipse调试程序,遇到下面的问题: d:/plugin/bin/../lib/gcc/arm-none-eabi/4.8.4/../../../../arm-none-eabi ...

  7. 防止在iOS设备中的Safari将数字识别为电话号码

    在测试中发现iPad上的Safari总会把长串数字识别为电话号码,文字变成蓝色,点击还会弹出菜单添加到通讯录. 别的地方倒也罢了,如果在用户名中出现数字(手机注册新浪微博的话用户名就是“手机用户xxx ...

  8. SQLite中的时间日期函数(转)

    SQLite包含了如下时间/日期函数: datetime().......................产生日期和时间date()...........................产生日期tim ...

  9. Hadoop总结篇之二--yarn的概况

    在弄清楚yarn是什么之前,先来看一下MRv1. 它的由编程模型+数据处理引擎(map/reduceTask)+运行时环境组成(JobTracker/TaskTracker).其中JobTracker ...

  10. 使用X-UA-Compatible来设置IE浏览器兼容模式(转)

    使用X-UA-Compatible来设置IE浏览器兼容模式 文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 前言 ...