dijkstra + 拓扑排序

这道题有负权边,但是卡了spfa,所以我们应该观察题目性质。

负权边一定是单向的,且不构成环,那么我们考虑先将正权边连上。然后dfs一次找到所有正权边构成的联通块,将他们看成点,那么负权边和这些点就构成了一张DAG。

对于DAG,我们可以拓扑排序,在排序的过程中,我们把入度为0的联通块里的所有点松弛一次,如果访问到联通块外的点,就让其入度减1,然后重复在拓扑排序中跑最短路的过程即可得到答案。

输出答案的时候注意一个坑,因为存在负权边,当有的点不能从起点达到的时候,INF可能被负权边松弛。。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
} const int N = 40005;
int t, r, p, s, cnt, tot, head[N], c[N], d[N], dist[N];
bool vis[N];
struct Edge { int v, next, w; } edge[N<<5]; void addEdge(int a, int b, int w){
edge[cnt].v = b, edge[cnt].w = w, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs(int s){
vis[s] = true;
c[s] = tot;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
dfs(u);
}
} void topSort(){
full(dist, INF);
queue<int> q;
for(int i = 1; i <= tot; i ++){
if(!d[i]) q.push(i);
}
dist[s] = 0;
while(!q.empty()){
full(vis, false);
int cur = q.front(); q.pop();
priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > pq;
for(int i = 1; i <= t; i ++){
if(c[i] == cur) pq.push(make_pair(dist[i], i));
}
while(!pq.empty()){
int f = pq.top().second, dis = pq.top().first; pq.pop();
if(vis[f]) continue;
vis[f] = true;
for(int i = head[f]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(dist[u] > dis + edge[i].w){
dist[u] = dis + edge[i].w;
if(c[u] == c[f]) pq.push(make_pair(dist[u], u));
}
if(c[u] != c[f]){
if(!--d[c[u]]) q.push(c[u]);
}
}
}
}
} int main(){ full(head, -1);
t = read(), r = read(), p = read(), s = read();
for(int i = 0; i < r; i ++){
int u = read(), v = read(), c = read();
addEdge(u, v, c), addEdge(v, u, c);
}
for(int i = 1; i <= t; i ++){
if(!vis[i]) ++tot, dfs(i);
}
for(int i = 0; i < p; i ++){
int u = read(), v = read(), c = read();
addEdge(u, v, c);
}
for(int cur = 1; cur <= t; cur ++){
for(int i = head[cur]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(c[u] != c[cur]) d[c[u]] ++;
}
}
topSort();
for(int i = 1; i <= t; i ++){
printf(dist[i] >= 100000000 ? "NO PATH\n" : "%d\n", dist[i]);
}
return 0;
}

BZOJ 2200 道路与航线 (算竞进阶习题)的更多相关文章

  1. BZOJ 2200 道路与航线(图论)

    BZOJ 2200 道路与航线 题目大意 有两种路,一种没负数,一种没环,求单源最短路. solution 存在负边权Dij一定不能用嘛,显然不是 根据题意能看出来是tarjan,将双向边缩点,得到的 ...

  2. BZOJ 1912 巡逻(算竞进阶习题)

    树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...

  3. BZOJ 2200 道路与航线

    好厉害呀这道题,有种豁然开朗的感觉.... 按拓扑顺序跑最短路. 然后注意细节,像WA的代码犯下的错是一笔带过没有丝毫考虑的...然而就是错了. 考试的时候一定要拍啊. #include<ios ...

  4. BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...

  5. BZOJ 1977 严格次小生成树(算竞进阶习题)

    树上倍增+kruskal 要找严格次小生成树,肯定先要找到最小生成树. 我们先把最小生成树的边找出来建树,然后依次枚举非树边,容易想到一种方式: 对于每条非树边(u,v),他会与树上的两个点构成环,我 ...

  6. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  7. 洛谷P4178 Tree (算竞进阶习题)

    点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...

  8. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  9. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

随机推荐

  1. nginx在代理转发地图瓦片数据中的应用

    最近有这样一个需求,需要将arcgis server发布的地图瓦片放在移动硬盘中,系统演示的时候,直接调用本地的地图瓦片,而非远程的,主要是为了系统演示的时候加快地图访问速度. 而且需要在任意电脑运行 ...

  2. mysql innodb存储引擎和一些参数优化

    mysql 的innodb存储引擎是事务性引擎,支持acid.innodb支持版本控制和高并发的技术是svcc:需要重点注意:myisam只缓存索引,innodb缓存索引和数据:

  3. 基于LBS的六边形热力图算法

    六边形算法: 我把六边形铺满的分布图进行了切分,切分为矩形,每个矩形中有一个六边形.4个三角形.两个小长方形,依次计算.边界判断上,采用主流的MP>MN的方式(M为上边界对称点,N为与六边形的交 ...

  4. JHipster技术栈定制 - JHipster Registry消息总线配置

    本文说明了如何定制化JHipster-Registry,增加消息总线功能. 实现的效果就是修改配置中心的文件后,通过消息队列主动推送给微服务而无需重启微服务,实现配置内容热加载. 1 整体规划 1.1 ...

  5. Python高级应用(3)—— 为你的项目添加验证码

    验证码简介 验证码的作用: 验证码在现在来说,是很常见的东西,可以一定程度的保护网站,比如防止网络爬虫恶意爬取网站数据啊,减少低级的攻击啊什么的.但是高级点的骚操作还是不太好防范,所以现在的验证码平台 ...

  6. 实战项目中Java heap space错误的解决

    部标GPS通讯系统在上线之后,经过不断调试,终于稳定运行一段时间,后来又遇到了Java heap space错误异常!日志如下: 说明系统中有未释放的对象.如何找出这些未释放对象以及监控JVM堆内存, ...

  7. C语言运行库翻译

    这是从Visual C++ 6里面的C语言部分翻译过来. http://files.cnblogs.com/files/sishenzaixian/C运行库.zip

  8. 统计numpy数组中最频繁出现的值

    arr = np.array([[1,2,100,4,5,6],[1,1,100,3,5,5],[2,2,4,4,6,6]]) 方法一: count = np.bincount(arr[:,2]) # ...

  9. A Deep Learning-Based System for Vulnerability Detection(二)

    接着上一篇,这篇研究实验和结果. A.用于评估漏洞检测系统的指标 TP:为正确检测到漏洞的样本数量 FP:为检测到虚假漏洞样本的数量(误报) FN:为未检真实漏洞的样本数量(漏报) TN:未检测到漏洞 ...

  10. python离线安装包

    一.用download命令离线下载包  *.whl , 这个方法好像python3.7以上才能用 那么我的requirement.txt内容就是: django==1.8.11 simplejson= ...