Luogu P1082 同余方程(NOIP 2012) 题解报告
【题目大意】
求关于x的同余方程 ax≡1(mod b)的最小整数解。
【思路分析】
由同余方程的有关知识可得,ax≡1(mod b)可以化为ax+by=1,此方程有解当且仅当gcd(a,b)=1,于是就可以用欧几里得算法求出一组特解x0,y0。
那么x0就是原方程的一个解,通解则为所有模b与x0同余的整数,通过取模操作可以把解的取值范围移动到1~b之间,这样就得到了最小整数解。
【代码实现】
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a,b,x,y;
ll exgcd(ll a,ll b,ll &x,ll &y){//欧几里得算法求特解
if(!b) {x=;y=;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x;x=y;y=z-y*(a/b);
return d;
}
int main(){
cin>>a>>b;
exgcd(a,b,x,y);
cout<<(x%b+b)%b<<endl;//最小整数解一定在1~b范围内
return ;
}
代码戳这里
Luogu P1082 同余方程(NOIP 2012) 题解报告的更多相关文章
- 【luogu P1082 同余方程】 题解
最近一直在学习数论,讲得很快,害怕落实的不好,所以做一道luogu的同余方程练练手. 关于x的同余方程 ax ≡ 1 mod m 那么x其实就是求a关于m的乘法逆元 ax + my = 1 对于这个不 ...
- [Luogu P1082]同余方程
题目链接 这道题求关于x的同余方程ax≡1(mod b)的最小正整数解.换而言之方程可以转换为ax+by=1,此时有y为负数.此时当且仅当gcd(a,b)|1时,方程有整数解. 于是乎这道题就变成了a ...
- luogu P1082 同余方程 |扩展欧几里得
题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...
- Luogu CF451E Devu and Flowers 题解报告
题目传送门 [题目大意] 有n种颜色的花,第i种颜色的花有a[i]朵,从这些花中选m朵出来,问有多少种方案?答案对109+7取模 [思路分析] 这是一个多重集的组合数问题,答案就是:$$C_{n+m- ...
- Luogu P1082 同余方程(exgcd模版)
传送门 求ax%b = 1,即ax - by = 1: 很明显这是一个exgcd的形式. 那么要做这道题,首先需要gcd和exgcd的算法作铺垫. gcd(辗转相膜法): int gcd(int a, ...
- NOIP 2012 Day2T2 借教室题解
NOIP 2012 Day2T2 借教室题解 题目传送门:http://codevs.cn/problem/1217/ 题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动 ...
- 洛谷——P1082 同余方程
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]
P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
随机推荐
- MongoDB-BSON
概念参考百科说明:BSON( Binary Serialized Document Format) 是一种二进制形式的存储格式,采用了类似于 C 语言结构体的名称.对表示方法,支持内嵌的文档对象和数组 ...
- 001_Go hello world
一.go获取程序参数及指针地址示例 package main import ( "fmt" "os" ) func main() { fmt.Println(o ...
- vue 绑定样式的几种方式
vue 绑定样式 对象语法 1.v-bind:class设置一个对象,动态切换class <div :class="{'active':isActive}">xxx&l ...
- ArrayBlockingQueue源码分析
ArrayBlockingQueue是一个基于数组实现的有界的阻塞队列. 属性 //底层存储元素的数组.为final说明一旦初始化,容量不可变,所以是有界的. final Object[] items ...
- 安装maven,并配置eclipse
平台 ubuntu 18.04 + Java 8 下载并安装Maven 下载页面:http://maven.apache.org/download.cgi 我这里使用写博客是最新的版本3.6.1,选择 ...
- Spring Mybatis多数据源配置范例
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- CTFcracktools——非常实用的CTF解密工具
做bugku的crypto题时偶然发现了这个,吐血推荐!! 十分全面好用 整合了常见的解码.进制转换等CTF常用的工具: 下载地址: https://github.com/0Linchen/CTFCr ...
- novaclient的api调用流程与开发
novaclient的api调用流程与开发 2015年07月05日 19:27:17 qiushanjushi 阅读数:3915 http://blog.csdn.net/tpiperatgod/ ...
- luogu P2194 HXY烧情侣
残忍的题面 我们来看这一道题,其实冗长的题目告诉我们一个核心——用tarjan tarjan是用来干什么呢?是用来求强连通分量(代码中指sc) 求出来又有什么用呢?每当我们求出一个强连通分量时,就去计 ...
- Magento composer 安装
composer create-project --repository=https://repo.magento.com/ magento/project-community-edition:2.2 ...