博客转载自:https://blog.csdn.net/xiaoxiaowenqiang/article/details/81051010 原文标题:深度学习结合SLAM 语义slam 语义分割 端到端SLAM CNN-SLAM DenseSLAM orbslam2 + ssd LSD-SLAM + CNN SemanticFusion Mask

深度学习结合SLAM 研究现状总结

本文github链接

1. 用深度学习方法替换传统slam中的一个/几个模块:

            特征提取,特征匹配,提高特征点稳定性,提取点线面等不同层级的特征点。
深度估计
位姿估计
重定位
其他
目前还不能达到超越传统方法的效果,
相较传统SLAM并没有很明显的优势(标注的数据集少且不全,使用视频做训练数据的非常少。
SLAM中很多问题都是数学问题,深度学习并不擅长等等原因)。

2. 在传统SLAM之上加入语义信息

            图像语义分割
语义地图构建
语义SLAM算是在扩展了传统SLAM问题的研究内容,现在出现了一些将语义信息集成到SLAM的研究,
比如说用SLAM系统中得到的图像之间的几何一致性促进图像语义分割,
也可以用语义分割/建图的结果促进SLAM的定位/闭环等,前者已经有了一些研究,
不过还是集中于室内场景,后者貌似还没有什么相关研究。
如果SLAM和语义分割能够相互促进相辅相成,应该能达到好的效果。
另:使用SLAM帮助构建大规模的图像之间有对应关系的数据集,
可以降低深度学习数据集的标注难度吧,应该也是一个SLAM助力深度学习的思路。

6

3. 端到端SLAM

    其实端到端就不能算是SLAM问题了吧,SLAM是同步定位与地图构建,端到端是输入image输出action,没有定位和建图。
- 机器人自主导航(深度强化学习)等

1. 用深度学习方法替换传统slam中的一个/几个模块:

A. CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

论文 

基于CNN的单张图深度估计,语义SLAM,半稠密的直接法SLAM.
将LSD-SLAM里的深度估计和图像匹配都替换成基于CNN的方法,取得了更为robust的结果,并可以融合语义信息. 鉴于卷积神经网络(CNN)深度预测的最新进展,
本文研究了深度神经网络的预测深度图,可以部署用于精确和密集的单目重建。
我们提出了一种方法,其中CNN预测的稠密深度图与通过直接单目SLAM获得的深度测量自然地融合在一起。
我们的融合方案在图像定位中优于单目SLAM方法,例如沿低纹理区域,反之亦然。
我们展示了使用深度预测来估计重建的绝对尺度,从而克服了单眼SLAM的主要局限性之一。
最后,我们提出一个框架,从单个帧获得的语义标签有效地融合了密集的SLAM,从单个视图产生语义相干的场景重构。
两个基准数据集的评估结果显示了我们的方法的鲁棒性和准确性。

 

语义SLAM研究现状总结的更多相关文章

  1. 深度学习结合SLAM研究总结

    博客转载自:https://blog.csdn.net/u010821666/article/details/78793225 原文标题:深度学习结合SLAM的研究思路/成果整理之 1. 深度学习跟S ...

  2. NLP+语篇分析(五)︱中文语篇分析研究现状(CIPS2016)

    摘录自:CIPS2016 中文信息处理报告<第三章 语篇分析研究进展.现状及趋势>P21 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebo ...

  3. NLP+语义分析(四)︱中文语义分析研究现状(CIPS2016、角色标注、篇章分析)

    摘录自:CIPS2016 中文信息处理报告<第二章 语义分析研究进展. 现状及趋势>P14 CIPS2016> 中文信息处理报告下载链接:http://cips-upload.bj. ...

  4. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  5. 语义SLAM的数据关联和语义定位(一)

    语义SLAM和多传感器融合是自动驾驶建图和定位部分比较热门的两种技术.语义SLAM中,语义信息的数据关联相较于特征点的数据关联有所不同.我们一般用特征描述子的相似性来匹配和关联不同图像中的特征点.特征 ...

  6. 语义slam用于高精地图和高精定位的一些想法

    最近一直在考虑语义slam在自动驾驶和辅助驾驶中的用法,研究了一下视觉为主的高精度地图+高精定位的模式,特别是mobileye的REM. 秉承先建图再定位的思路,在服务器端(云端)建图,在车端定位. ...

  7. 分享| 语义SLAM的未来与思考(泡泡机器人)

    相比典型的点云地图,语义地图能够很好的表示出机器人到的地方是什么,机器人“看”到的东西是什么.比如进入到一个房间,点云地图中,机器人并不能识别显示出来的一块块的点云到底是什么,但是语义地图的构建可以分 ...

  8. VR的国内研究现状及发展趋势

    转载请声明转载地址:http://www.cnblogs.com/Rodolfo/,违者必究. 一.国内研究现状 我国虚拟现实技术研究起步较晚,与发达国家还有一定的差距. 随着计算机图形学.计算机系统 ...

  9. RNA测序研究现状与发展

    RNA测序研究现状与发展 1 2,584 A+ 所属分类:Transcriptomics   收  藏 通常来说,某一个物种体内所有细胞里含有的DNA都应该是一模一样的,只是因为每一种细胞里所表达的R ...

随机推荐

  1. java-初识引用分类及Map实现类WeakHashMap

    1.同样的,话不多讲直接上代码 (1)认识了解下引用分类及其作用 package com.otherMapProduce; import java.lang.ref.WeakReference; /* ...

  2. C# 用户控件之温度计

    本文以一个用户控件[User Control]实现温度计的小例子,简述用户控件的相关知识,以供学习分享使用,如有不足之处,还请指正. 概述 一般而言,用户控件[User Control],是在Visu ...

  3. Mybatis从认识到了解

    目录 MyBatis的介绍 介绍: 为什么选择MyBatis: 与Hibernate的对比: MyBatis的优点: 入门示例 Mybatis核心组件 四大核心组件 SqlSessionFactory ...

  4. MongoDB 基本操作和聚合操作

    一 . MongoDB 基本操作 基本操作可以简单分为查询.插入.更新.删除. 1 文档查询 作用 MySQL SQL  MongoDB  所有记录  SELECT * FROM users;  db ...

  5. mysql使用索引的注意事项

    使用索引的注意事项 使用索引时,有以下一些技巧和注意事项: 1.索引不会包含有NULL值的列 只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索 ...

  6. Spring MVC 数据绑定 (四)

    完整的项目案例: springmvc.zip 目录 实例 项目结构路径: 一.配置web.xml <?xml version="1.0" encoding="UTF ...

  7. sqlserver数据库触发器调用外部exe

    sqlserver数据库触发器调用外部exe,同事可以选择参入参数! sqlserver使用 master..xp_cmdshell 进行外部exe的执行. 使用master..xp_cmdshell ...

  8. mysql解决select * from 表名 (where + 约束条件为空)

    mysql解决select * from 表名 (where + 约束条件为空),示例如下: SELECT * from tableName WHERE name is NULL; 从 tableNa ...

  9. LeetCode算法题-Construct String from Binary Tree(Java实现)

    这是悦乐书的第273次更新,第288篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第141题(顺位题号是606).构造一个字符串,该字符串由二叉树中的括号和整数组成,并具 ...

  10. LeetCode算法题-Relative Ranks(Java实现)

    这是悦乐书的第248次更新,第261篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第115题(顺位题号是506).根据N名运动员的得分,找到他们的相对等级和得分最高的三个 ...