汉诺塔描述

古代有一座汉诺塔,塔内有3个座A、B、C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示。有一个和尚想把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座来放盘子。

代码:

import turtle

class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)

def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2]

def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates

def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles

def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l)

def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)

myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()

实现效果图:

---------------------
作者:陶晨毅
来源:CSDN
原文:https://blog.csdn.net/beerbread134/article/details/69226991
版权声明:本文为博主原创文章,转载请附上博文链接!

Python汉诺塔问题的更多相关文章

  1. python汉诺塔问题的递归理解

    一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...

  2. Python汉诺塔问题递归算法与程序

    汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...

  3. Python汉诺塔

    import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.it ...

  4. Python 汉诺塔

    在汉诺塔游戏中,有三个分别命名为A.B.C得塔座,几个大小各不相同,从小到大一次编号得圆盘,每个原盘中间有一个小孔.最初,所有得圆盘都在A塔座上,其中最大得圆盘在最下面,然后是第二大,以此类推. 游戏 ...

  5. Python 汉诺塔游戏

    #n 多少个盘子 def hanoi(n,x,y,z): : print(x,'→',z) else: hanoi(n-, x, z,y) #将前n-1个盘子从X移动到y上 print(x,'→',z ...

  6. [python]汉诺塔问题

    相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...

  7. Python汉诺塔求解

    1 def hanoi(n,a,b,c): 2 3 if(n>0): 4 5 hanoi(n-1,a,b,c) 6 7 print("Move disc no:%d from pile ...

  8. python递归——汉诺塔

    汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...

  9. 1.python算法之汉诺塔

    代码如下: #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: 汉诺塔.py @t ...

随机推荐

  1. GET和POST两种基本请求方法(转自博主--在途中#)

    GET和POST两种基本请求方法的区别 GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过req ...

  2. pydemo_testMaopuSpider

    import json from multiprocessing import Pool import requests from requests.exceptions import Request ...

  3. 快速学习C语言途径,让你少走弯路

    1.标准C语言能干什么? 坦白讲,在今天软件已经发展了半个多世纪,单纯的C语言什么都干不了.标准C语言库只提供了一些通用的逻辑运算方法以及字符串处理,当然字符串在C语言看来也是一种操作内存的方法,所以 ...

  4. DLG消息

    WM_GETMINMAXINFO 0X0024 WM_NCCREATE 0X0081 WM_NCCALCSIZE 0X0083   WM_CREATE 0X0001 WM_SIZE 0X0005 WM ...

  5. python精进之路1---基础数据类型

    python精进之路1---基本数据类型 python的基本数据类型如上图,重点需要掌握字符串.列表和字典. 一.int.float类型 int主要是用于整数类型计算,float主要用于小数. int ...

  6. linux下tomcat的https访问

    1.安装JDK(省略…) 2.安装tomcat(省略…) 3.配置SSL 进入JDK的安装目录 # cd /usr/java/jdk1..0_03/bin # ./keytool -genkey -a ...

  7. C#winform窗体利用系统抓取关闭按钮事件

    const int WM_SYSCOMMAND = 0x112;        const int SC_CLOSE = 0xF060;        const int SC_MINIMIZE = ...

  8. (Review cs231n) Spatial Localization and Detection(classification and localization)

     重在图像的定位和检测的内容. 一张图片中只有一种给定类别标签的对象,定位则是图像中有对象框:再这些类中,每一个训练目标都有一个类和许多的图像内部对应类的位置选框. 猜想的仅是类标签,不如说它们是位置 ...

  9. Linux基础命令---sar显示系统活动信息

    sar sar指令用来收集.报告.保存系统的活动信息.sar命令将操作系统中选定的累积活动计数器的内容写入标准输出.会计系统根据参数“interval”.“count”中的值,写入以秒为单位的指定间隔 ...

  10. Session &cookie introduction,usage

    Cookie 1)什么是Cookie?      服务器为了识别用户身份而临时存放在浏览器端的少量数据.     2)工作原理         浏览器访问服务器时,服务器将一些数据以set-cooki ...