Python汉诺塔问题
汉诺塔描述
古代有一座汉诺塔,塔内有3个座A、B、C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示。有一个和尚想把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座来放盘子。
代码:
import turtle
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2]
def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
实现效果图:
---------------------
作者:陶晨毅
来源:CSDN
原文:https://blog.csdn.net/beerbread134/article/details/69226991
版权声明:本文为博主原创文章,转载请附上博文链接!
Python汉诺塔问题的更多相关文章
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
- Python汉诺塔问题递归算法与程序
汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...
- Python汉诺塔
import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.it ...
- Python 汉诺塔
在汉诺塔游戏中,有三个分别命名为A.B.C得塔座,几个大小各不相同,从小到大一次编号得圆盘,每个原盘中间有一个小孔.最初,所有得圆盘都在A塔座上,其中最大得圆盘在最下面,然后是第二大,以此类推. 游戏 ...
- Python 汉诺塔游戏
#n 多少个盘子 def hanoi(n,x,y,z): : print(x,'→',z) else: hanoi(n-, x, z,y) #将前n-1个盘子从X移动到y上 print(x,'→',z ...
- [python]汉诺塔问题
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...
- Python汉诺塔求解
1 def hanoi(n,a,b,c): 2 3 if(n>0): 4 5 hanoi(n-1,a,b,c) 6 7 print("Move disc no:%d from pile ...
- python递归——汉诺塔
汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...
- 1.python算法之汉诺塔
代码如下: #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: 汉诺塔.py @t ...
随机推荐
- VS2008生成解决方案卡顿、龟速
1.工具-选项-项目和解决方案-MS BUILD 项目生成输出详细信息中选择“诊断” 2.进入.NET环境的安装位置:C:\WINDOWS\Microsoft.NET\Framework\v3.5 , ...
- JavaScript之jsx&react
1.Virtual DOM 1.将网页所有内容映射到一颗树形结构的层级对象模型上,浏览器提供对dom的支持,用户可以是用脚本调用dom,api来动态修改dom节点,从而达到修改网页目的,这种修改是浏览 ...
- ubuntu安装postgresql以及pgadmin4当前最新(4.3)网页版
pgAdmin4安装 1.安装安装包 sudo apt-get install build-essential libssl-dev libffi-dev libgmp3-dev virtualenv ...
- Vue学习2:模板语法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- MAVEN简介之——pom.xml
maven构建的生命周期 maven是围绕着构建生命周期这个核心概念为基础的.maven里有3个内嵌的构建生命周期,default,clean和site. default是处理你项目部署的:clean ...
- Excel坐标自动在AutoCad绘图_3
众所周知,Excel对数据处理的功能非常强大,它可以进行数据处理.统计分析已经辅助决策的操作,该软件已经渗透到各个领域.作为一个测绘人,GISer, 也经常利用excel完成一些测量表格的自动化计算, ...
- 功能比较全的StackExchange.Redis封装帮助类(.Net/C#)
Redis官网https://redis.io/ 以下内容未全部验证,如有问题请指出 //static NewtonsoftSerializer serializer = new Newtonsoft ...
- 用Nuget部署程序包
用Nuget部署程序包 Nuget是.NET程序包管理工具(类似linux下的npm等),程序员可直接用简单的命令行(或VS)下载包.好处: (1)避免类库版本不一致带来的问题.GitHub是管理源代 ...
- POSIX
API: POSIX (编译前的源代码) ABI: APPLICATION BINARY INTERFACE (编译后的二进制文件,linux & windows不兼容) ---------- ...
- 【转载】Sikuli安装及使用——基于图像识别自动化工具
一.Sikuli能做什么? 用屏幕截图的方式,用截出来的图形元素组合出神奇的程序实现自动化安装.卸载软件,自动化测试(Windows.mac应用测试,Web测试,移动端测试) 二.安装Sikuli 预 ...