原文地址:http://www.jianshu.com/p/5b4a64874650

问题描述



程序实现

# coding: utf-8

import numpy as np
import matplotlib.pyplot as plt
import time def read_data(dataFile):
with open(dataFile, 'r') as file:
data_list = []
for line in file.readlines():
line = line.strip().split()
# add x0=1.0
data_list.append([1.0] + [float(l) for l in line])
num_data = len(data_list)
data_array = np.array(data_list)
return (num_data,data_array) def sign(n):
if(n>0):
return 1
else:
return -1 # define PLA class
class PLA(object):
def __init__(self,num_data,data_array,training_epochs=2000,ita=1.0,qID=15):
self.num_data=num_data
self.data_array=data_array
self.training_epochs=training_epochs
self.ita=ita
self.qID=qID def train(self,w=np.zeros([5])):
self.update_counts_list=[]
self.last_error_id_list=[]
for k in range(self.training_epochs):
if self.training_epochs==1:
id_array=np.array([m for m in range(self.num_data)])
else:
np.random.seed(k)
id_array = np.random.permutation([m for m in range(self.num_data)])
update_counts = 0
total_counts = 0
self.w=np.array(w)
id = 0
error_point_id = -1
while (total_counts <= self.num_data):
g = 0
g += np.dot(self.w, self.data_array[id_array[id]][:5])
if sign(g) == self.data_array[id_array[id]][5]:
total_counts += 1
else:
self.w += self.ita*self.data_array[id_array[id]][5] * self.data_array[id_array[id]][:5]
error_point_id = id_array[id]
update_counts += 1
total_counts = 0
id += 1
id = id % self.num_data
self.update_counts_list.append(update_counts)
self.last_error_id_list.append(error_point_id)
return def show_results(self):
print("\n",self.qID,"...")
print("training:")
if self.training_epochs==1:
print("the number of updates: ", self.update_counts_list[0])
print("the final error point id: ", self.last_error_id_list[0])
print("-----------------------")
return
else:
print("the list of update counts: ",self.update_counts_list)
print("the list of last error point id: ",self.last_error_id_list)
print("the average number of updates:", sum(self.update_counts_list) / self.training_epochs)
print("-----------------------")
plt.figure()
plt.hist(self.update_counts_list)
plt.xlabel("the number of updates")
plt.ylabel("frequency")
plt.title(self.qID)
plt.savefig("%s_train.png"%self.qID)
return def total_error_counts(w,data_array,num_data):
total_error_counts=0
for i in range(num_data):
if sign(np.dot(w, data_array[i][:5])) != data_array[i][5]:
total_error_counts+=1
return total_error_counts # define PA class
class PA(PLA):
def __init__(self,num_data,data_array,num_test,test_array,
training_epochs=2000,given_updates=50,ita=1.0,pla_flag=False,qID=18):
PLA.__init__(self,num_data,data_array,training_epochs,ita,qID)
self.num_test=num_test
self.test_array=test_array
self.given_updates=given_updates
self.pla_flag=pla_flag def train_and_test(self,w=np.zeros([5])):
self.last_error_id_list=[]
self.test_error_rate_list=[]
for k in range(self.training_epochs):
# train
if self.training_epochs==1:
id_array=np.array([m for m in range(self.num_data)])
else:
np.random.seed(k)
id_array = np.random.permutation([m for m in range(self.num_data)])
update_counts = 0
id = 0
self.pocket_w = np.array(w) # create a copy of w and give it to self.w
w=np.array(w)
error_point_id = -1
while (update_counts <= self.given_updates):
g = 0
g += np.dot(w, self.data_array[id_array[id]][:5])
if sign(g) != self.data_array[id_array[id]][5]:
w += self.ita*self.data_array[id_array[id]][5] * self.data_array[id_array[id]][:5]
if(self.pla_flag or (total_error_counts(w,self.data_array,self.num_data)<total_error_counts(self.pocket_w,self.data_array,self.num_data))):
self.pocket_w=np.array(w)
error_point_id = id_array[id]
update_counts += 1
id += 1
id = id % self.num_data
self.last_error_id_list.append(error_point_id)
# test
self.test_error_rate_list.append(total_error_counts(self.pocket_w, self.test_array, self.num_test)
/ self.num_test)
return def show_results(self):
print("\n",self.qID,"...")
print("training:")
if self.training_epochs==1:
print("the final error point id: ", self.last_error_id_list[0])
else:
print("the list of last error point id: ",self.last_error_id_list)
print("testing:")
print("the average error rate on test set: ",np.sum(self.test_error_rate_list)/self.training_epochs)
print("-----------------------")
plt.figure()
plt.hist(self.test_error_rate_list)
plt.xlabel("error rate")
plt.ylabel("frequency")
plt.title(self.qID)
plt.savefig("%s_test.png"%self.qID)
return if __name__=="__main__":
num_data,data_array=read_data("hw1_15_train.dat") # 15
pla_15=PLA(num_data,data_array,training_epochs=1,qID=15)
pla_15.train()
pla_15.show_results() # 16
pla_16=PLA(num_data,data_array,qID=16)
pla_16.train()
pla_16.show_results() # 17
pla_17=PLA(num_data,data_array,ita=0.5,qID=17)
pla_17.train()
pla_17.show_results() # 16 else 1
pla_16_1=PLA(num_data,data_array,qID=161)
pla_16_1.train(w=np.array([1.0,0,0,0,0]))
pla_16_1.show_results() # 17 else 1
pla_17_1=PLA(num_data,data_array,ita=0.5,qID=171)
pla_17_1.train(w=np.array([1.0,0,0,0,0]))
pla_17_1.show_results() num_data,data_array=read_data("hw1_18_train.dat")
num_test,test_array=read_data("hw1_18_test.dat") # 18
pa_18=PA(num_data,data_array,num_test,test_array,qID=18)
start = time.time()
pa_18.train_and_test()
end=time.time()
print("total time for train and test of 18: ",end-start," s")
pa_18.show_results() # 19
pa_19=PA(num_data,data_array,num_test,test_array,pla_flag=True,qID=19)
start=time.time()
pa_19.train_and_test()
end=time.time()
print("total time for train and test of 19: ",end-start," s")
pa_19.show_results() # 20
pa_20=PA(num_data,data_array,num_test,test_array,given_updates=100,qID=20)
pa_20.train_and_test()
pa_20.show_results() # 18 else 1
pa_18_1=PA(num_data,data_array,num_test,test_array,qID=181)
pa_18_1.train_and_test(w=np.array([1.0,0,0,0,0]))
pa_18_1.show_results() # 20 else 1
pa_20_1=PA(num_data,data_array,num_test,test_array,given_updates=100,qID=201)
pa_20_1.train_and_test(w=np.array([1.0,0,0,0,0]))
pa_20_1.show_results()

运行结果及分析

15

16



17



对比16与17的结果:

16中步长1.0,17中步长0.5,看似步长对更新次数无影响?

16.1



17.1



对比16.1与17.1的结果:

16.1中步长1.0,17.1中步长0.5,可见步长对更新次数有影响;

再看16 vs 16.1、17 vs 17.1,前者\(W\)初始值[0,0,0,0,0],后者\(W\)初始值[1,0,0,0,0],可见\(W\)初始值对更新次数有影响。

18



19



对比18与19的结果:

可见PA(18)速度明显慢于PLA(19);但在数据线性不可分的情况下,PA表现比PLA好。

20



18.1



20.1



分别对比18与20、18.1与20.1、18与18.1、20与20.1的结果:

结论与PLA处类似,

W初始值、更新步长对分类器表现有影响。

机器学习基石笔记:Homework #1 PLA&PA相关习题的更多相关文章

  1. 机器学习基石笔记:11 Linear Models for Classification

    一.二元分类的线性模型 线性分类.线性回归.逻辑回归: 可视化这三个线性模型的代价函数, SQR.SCE的值都是大于等于0/1的. 理论分析上界: 将回归应用于分类: 线性回归后的参数值常用于pla/ ...

  2. 机器学习基石笔记:11 Linear Models for Classification、LC vs LinReg vs LogReg、OVA、OVO

    原文地址:https://www.jianshu.com/p/6f86290e70f9 一.二元分类的线性模型 线性回归后的参数值常用于PLA/PA/Logistic Regression的参数初始化 ...

  3. 机器学习基石笔记:02 Learning to Answer Yes/No、PLA、PA

    原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即 ...

  4. 机器学习基石笔记:Homework #2 decision stump相关习题

    原文地址:http://www.jianshu.com/p/4bc01760ac20 问题描述 程序实现 17-18 # coding: utf-8 import numpy as np import ...

  5. 机器学习基石笔记:Homework #4 Regularization&Validation相关习题

    原文地址:https://www.jianshu.com/p/3f7d4aa6a7cf 问题描述 程序实现 # coding: utf-8 import numpy as np import math ...

  6. 机器学习基石笔记:Homework #3 LinReg&LogReg相关习题

    原文地址:http://www.jianshu.com/p/311141f2047d 问题描述 程序实现 13-15 # coding: utf-8 import numpy as np import ...

  7. 机器学习基石:Homework #0 SVD相关&常用矩阵求导公式

  8. 机器学习基石笔记:03 Types of Learning

    原文地址:https://www.jianshu.com/p/86b2a9cef742 一.学习的分类 根据输出空间\(Y\):分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据 ...

  9. 机器学习基石笔记:08 Noise and Error

    噪声:误标.对同一数据点的标注不一致.数据点信息不准确...... 噪声是针对整个输入空间的. 存在噪声的情况下,VC bound依旧有用: 存在噪声,就是f------>p(y|x),f是p的 ...

随机推荐

  1. MyCat读写分离-笔记(四)

    概述 Mycat能够实现数据库读写分离,不能实现主从同步,数据库的备份还是基于数据库层面的.Mycat只是数据库的中间件: Mycat读写分离配置 在MySQL中间件出现之前,对于MySQL主从集群, ...

  2. Centos7安装jdk-12的详细过程

    Centos7安装jdk-12的详细过程 2019-04-12   21:23:24 一.下载JDK-12版本 链接地址:官方地址 下载:jdk-12_liunx-x64_bin.tar.gz 二.检 ...

  3. Windows环境下编译Assimp库生成Android可用的.so或.a文件

    在做项目过程中需要使用Assimp这个3D模型读取库来读取obj格式的模型,因为项目是基于Android平台,采用NDK开发,所以就打算编译Assimp库并生成.so文件.本文使用Assimp-v.5 ...

  4. 【ABP.Net】2.多数据库支持&&初始化数据库

    abp默认连接的数据库是MSSQL,但是在开发过程中往往很多开发者不满足于mssql. 所以这里演示一下把mssql改成postgresql,来进行接下来的系统开发. abp的orm是用EF的.那么我 ...

  5. 解决audio控制播放音量

    在写手机端项目时,可能会遇到使用audio播放音乐,那么怎样控制audio默认播放的音量呢?下面时解决办法 volume 属于是控制audio 播放音乐的音量,其范围0-1,1表示音量最大 getVi ...

  6. vbs脚本实现自动打字祝福&搞笑

    脚本祝福礼物 概述 听说抖音上流行一种用代码做程序表白的东西,,,, 当然我也不是要表白,,,, 但是好像蛮有意思的,,,, 于是,又学了一下vbs脚本,做了几个很不错的祝福脚本,不懂代码的可以直接戳 ...

  7. H5本地存储详细使用教程(localStorage + JSON数据存储应用框架)

    一.Web Storage教程 1.概述: 对于Web Storage来说,实际上是Cookies存储的进化版.如果了解Cookie的人几乎一看Web Storage就会用,如果你从来没用过没了解过C ...

  8. linux mailbox模型

    一.device tree中的写法 二. mailbox框架 (driver/mailbox/mailbox.c) struct mbox_controller { struct device *de ...

  9. php解析ini,conf文件

    /** * 解析conf文件,类似ini文件 * @param string $strFileName 文件名 * @param boolean $boolParseVal 解析值为数组,多 * @a ...

  10. Java面经

    转载:[Java面经]干货整理, Java面试题(覆盖Java基础,Java高级,JavaEE,数据库,设计模式等)   原文:http://www.cnblogs.com/wang-meng/p/5 ...