CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html
题目传送门 - CodeForces 553E
题意
一个有$n$个节点$m$条边的有向图,每条边连接了$a_i$和$b_i$,花费为$c_i$。
每次经过某一条边就要花费该边的$c_i$。
第$i$条边耗时为$j$的概率为$p_{i,j}$。
现在你从$1$开始走到$n$,如果你在$t$单位时间内(包括$t$)到了$n$,不需要任何额外花费,否则你要额外花费$x$。
问你在最优策略下的期望花费最小为多少。
(注意你每走一步都会根据当前情况制定最好的下一步)
$$n\leq 50 ,m \leq 100, t\leq 20000, x\leq 10^6$$
题解
毛爷爷论文题。
放上毛爷爷题解。
我稍微加了点修改。
于是我是不是不用写题解了??
写一下我做这题的感受。
首先自己想了好久yy出了一个倍增+$FFT$,复杂度和标算一样(当然好像是错的),然后觉得过不去。
然后看标算看到分治,没往下看,继续自己yy,好像会了$2只log$,觉得很神奇,因为两只$log$过不去嘛,所以肯定有神奇的优化。
想了很久还是不会,往下一看真的是两只$log$。QAQ。
写代码也是难受,看着标算还是写了50分钟。
关键是还写挂了。
找了好久好久,猛然间发现我在$FFT$之前的给$A$、$B$数组赋值的时候,两次都赋给了$A$,难怪$FFT$结果一直是$0$,然后一边心态爆炸的吐槽,一边交了一发,还好$1A$了,不然心态更爆炸。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=55,M=105,T=20005,S=1<<15;
double PI=acos(-1.0);
int n,m,t,punish;
int a[M],b[M],c[M],dis[N][N];
double dp[N][T],sum[M][T],p[M][T];
int s,d,Rev[S];
struct C{
double r,i;
C(){}
C(double a,double b){r=a,i=b;}
C operator + (C x){return C(r+x.r,i+x.i);}
C operator - (C x){return C(r-x.r,i-x.i);}
C operator * (C x){return C(r*x.r-i*x.i,r*x.i+i*x.r);}
}w[S],A[S],B[S];
void FFT(C a[],int n){
for (int i=0;i<n;i++)
if (i<Rev[i])
swap(a[i],a[Rev[i]]);
for (int t=n>>1,d=1;d<n;d<<=1,t>>=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
C tmp=w[t*j]*a[i+j+d];
a[i+j+d]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
void solve(int L,int R){
if (L==R){
for (int e=1;e<=m;e++)
dp[a[e]][L]=min(dp[a[e]][L],sum[e][L]+c[e]);
return;
}
int mid=(L+R)>>1;
solve(mid+1,R);
//sum[e][L...mid]+=dp[mid+1...R]#p[e][1...R-L]
//sum[e][L...mid]+=dp[mid+1...R]*p[e][R-L-1...0]
for (s=1,d=0;s<R-mid+R-L;s<<=1,d++);
for (int i=0;i<s;i++){
Rev[i]=(Rev[i>>1]>>1)|((i&1)<<(d-1));
w[i]=C(cos(2*i*PI/s),sin(2*i*PI/s));
}
for (int e=1;e<=m;e++){
for (int i=0;i<s;i++)
A[i]=B[i]=C(0,0);
for (int i=mid+1;i<=R;i++)
A[i-mid-1]=C(dp[b[e]][i],0);
for (int i=1;i<=R-L;i++)
B[R-L-i]=C(p[e][i],0);
FFT(A,s),FFT(B,s);
for (int i=0;i<s;i++)
A[i]=A[i]*B[i],w[i].i*=-1.0;
FFT(A,s);
for (int i=0;i<s;i++)
A[i].r/=s,w[i].i*=-1.0;
for (int i=L;i<=mid;i++)
sum[e][i]+=A[i-mid-1+(R-L)].r;
}
solve(L,mid);
}
int main(){
scanf("%d%d%d%d",&n,&m,&t,&punish);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
dis[i][j]=i==j?0:1e9;
for (int i=1;i<=m;i++){
scanf("%d%d%d",&a[i],&b[i],&c[i]);
dis[a[i]][b[i]]=min(dis[a[i]][b[i]],c[i]);
for (int j=1;j<=t;j++)
scanf("%lf",&p[i][j]),p[i][j]/=100000;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
for (int i=0;i<N;i++)
for (int j=0;j<T;j++)
dp[i][j]=1e9;
for (int i=1;i<=n;i++)
dp[i][t+1]=punish+dis[i][n];
for (int i=0;i<=t;i++)
dp[n][i]=0;
memset(sum,0,sizeof sum);
for (int e=1;e<=m;e++){
double P=0;
for (int i=1;i<=t;i++){
P+=p[e][t-i+1];
sum[e][i]+=P*dp[b[e]][t+1];
}
}
solve(0,t);
printf("%.8lf",dp[1][0]);
return 0;
}
CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治的更多相关文章
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- ●codeforces 553E Kyoya and Train
题链: http://codeforces.com/problemset/problem/623/E 题解: FFT,DP 题意: 一个有向图,给出每条边的起点u,终点v,费用c,以及花费每种时间的概 ...
- Codeforces 553E Kyoya and Train
题目大意 链接:CF533E 给一张\(n\)个点,\(m\)条边的图,起点\(1\)终点\(n\),如果不能在\(T\)的时间内到达则需支付\(X\)的代价. 走每条边都会支付一定代价,经过一条边\ ...
- 【CF553E】Kyoya and Train 最短路+cdq分治+FFT
[CF553E]Kyoya and Train 题意:有一张$n$个点到$m$条边的有向图,经过第i条边要花$c_i$元钱,经过第i条边有$p_{i,k}$的概率要耗时k分钟.你想从1走到n,但是如果 ...
- CF 553E Kyoya and Train
题目分析 期望\(\text{dp}\). 设\(f_{i,j}\)表示在第\(j\)个时刻从\(i\)点出发,到达终点的期望花费. 有转移方程: \[ f_{x,t}=\min_{(x,y)\in ...
- 【codeforces 553E】 Kyoya and Train
http://codeforces.com/problemset/problem/553/E (题目链接) 艹尼玛,CF还卡劳资常数w(゚Д゚)w!!系统complex被卡TLE了T_T,劳资写了一天 ...
- 【BZOJ】3456: 城市规划 动态规划+多项式求逆
[题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{ ...
- Codeforces A. Kyoya and Colored Balls(分步组合)
题目描述: Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- CF553E Kyoya and Train
Kyoya and Train 一个有\(n\)个节点\(m\)条边的有向图,每条边连接了\(a_i\)和\(b_i\),花费为\(c_i\). 每次经过某一条边就要花费该边的\(c_i\). 第\( ...
随机推荐
- Flask 框架介绍
FLASK 框架 框架介绍 简单来说: 小 扩展性极强 官方文档 点这里 Flask 和 Django 的区别 Django 无socke,依赖第三方模块wsgi 路由系统(CBV,FBV) 中间件, ...
- mongoDB 文档操作_增
增加 / 插入 /保存 单文档插入 命令 db.collection.insertOne(doc) 功能 向被 use 的数据库中插入数据 实例 db.class.insertOne({"n ...
- Magento2 Service contracts 服务合同
服务合同 Magento是一个模块化系统,它使第三方开发人员能够定制和覆盖其框架的核心部分.然而,这种灵活性是有代价的. 业务逻辑倾向于泄漏Magento系统的各个层,这表现为重复且不一致的代码. 商 ...
- CF932 E. Team Work 结题报告
CF932 E. Team Work 题意 求 \[ \sum_{i=0}^n\binom{n}{i}i^k \] 其中\(n\le 10^9,k\le 5000\),对\(mod=998244353 ...
- Java【第五篇】基本语法之--数组
数组概述 数组是多个相同类型数据的组合,实现对这些数据的统一管理数组属引用类型,数组型数据是对象(Object),数组中的每个元素相当于该对象的成员变量数组中的元素可以是任何数据类型,包括基本类型和引 ...
- python xpath学习
一.选取节点: 二.谓词: 注意:在scrapy中用xpath进行搜索时,如果使用相对路径,要加上.,如,不然搜索的是整个文档.
- sqlalchemy和pymysql通过ssh连接远程mysql服务器
首先需要一个模块sshtunnel,如果没有直接pip install sshtunnel 其实连个连接方式非常像: pymysql连接方式: import pymysql from sshtunne ...
- Awesome CLI
请移步https://github.com/zhuxiaoxi/awesome-online-tools 欢迎一同维护这个列表 jq JSON工具 shellcheck 更好用的Shell语法检查 c ...
- User-Agent 请求消息头
User-Agent User-Agent, 用户代理 请求消息头,其中包含了 客户机.客户端 的一些信息, 如 浏览器版本 和 类型, 操作系统的类型等. 具体解析 步骤, 推荐以下 博客文章 ...
- 使用vue-cli创建vue项目
vue-cli是官方发布的vue.js项目脚手架工具,使用它可以快速创建vue项目,github地址:https://github.com/vuejs/vue-cli 1.安装vue-cli //设置 ...