一道很经典的 BFS 题

想认真的写篇题解。

题目来自:https://www.luogu.org/problemnew/show/P1126

题目描述

机器人移动学会(RMI)现在正尝试用机器人搬运物品。机器人的形状是一个直径$1.6米的球。在试验阶段,机器人被用于在一个储藏室中搬运货物。储藏室是一个N×M的网格,有些格子为不可移动的障碍。机器人的中心总是在格点上,当然,机器人必须在最短的时间内把物品搬运到指定的地方。机器人接受的指令有:向前移动1步(Creep);向前移动2步(Walk);向前移动3步(Run);向左转(Left);向右转(Right)。每个指令所需要的时间为1秒。请你计算一下机器人完成任务所需的最少时间。

输入

第一行为两个正整数N,M(N,M≤50),下面N行是储藏室的构造,0表示无障碍,1表示有障碍,数字之间用一个空格隔开。接着一行有4个整数和1个大写字母,分别为起始点和目标点左上角网格的行与列,起始时的面对方向(东E,南S,西W,北N),数与数,数与字母之间均用一个空格隔开。终点的面向方向是任意的。

输出

一个整数,表示机器人完成任务所需的最少时间。如果无法到达,输出-1。

图例

分析

以前在刷刘汝佳的紫书《算法竞赛入门经典》时做过这道题,现在又再次遇到,幸不汝(辱)命,一次就过了。

BFS 性质

我们都知道,BFS 具有从起点到目标节点(或状态)路径最短的特性,但是使用 BSF 这一特性时需要注意,只有当所有的边权重相同(一般为1)时,它才具有此性质,边权不等时不具有。BFS 每次从一个节点只经历一次转移,当求单纯的求距离时可以认为每次转移的边权为一,转移次数最少的路径一定是距离最短的。我们可以用两张图来直观的表现这个特性:

在图上:

初始节点为 0,每次从一个节点向四周节点扩散,访问所有距离为一(相邻,经过一次状态转换)的节点。

第一次扩散访问了所有蓝色节点,并没有找到目标节点,继续扩散。第二次扩散访问了两个粉色节点,虚线节点并没有被访问。因为在扩散到左边的粉色节点时,我们已经找到了目标节点。那么不去搜索第三个粉色节点(虚线)节点不会丢解吗?在图中我们也确实能看到,虚线节点在经历一次扩散后,到达紫色节点,紫色节点再扩散一次,也可到达目标节点。不过,这个选择无论是从上述图片还是从我的描述文字来看,他的距离都不短。那么为什么会这样呢?我说一下我个人的理解。看下面一幅图:

在树上:

在树上的 BFS 被称为层次遍历。他的工作原理就如其名,每次访问一层的节点,同一层的节点有一个特点就是,他们的层数是相同的,也即到根节点的距离。当扩散到第三层时,(从左向右)第三个粉色节点作为目标节点被发现,此时我们可以对比三种情况:

  1. 由于第三个粉色节点为第一个目标节点,所以所有该节点左侧同层节点都不是目标节点,并且从这些节点继续扩散出的节点的层数(即到根节点的距离)一定 大于 第三个粉色节点到根节点的距离。
  2. 对于第三个粉色节点,也即我们的第一个目标节点(为什么强调 “第一个” 因为可能有不止一个目标节点,即多个解),由他扩散而出的子节点的距离一定 大于 这个节点。
  3. 对于虚线节点,由于他是不是目标节点,在未访问到时未知,而他的性质是和第一种情况相似的,所以去访问并扩散虚线节点我们能得到的结果是他的距离

    大于等于 第三个粉色节点

由此,可以得出如果只有一个解,那么第一次被发现的目标节点 即第三个粉色节点一定是距离根节点最近的。

在图上也可以类比层的概念,得出相同的结论。

解题思路

BFS 的性质讨论完,再来具体考虑这道题。这道题应该能明显看出来,是在图上寻找最短路的问题。不过首先需要对数据进行一些分析处理,才能更好的应用 BFS。此题唯一有些麻烦的就是,机器人具有半径,将每个格子单独处理不方便。由给出的图例可以发现,机器人一定会占据四个格子的空间,而一旦一个格子障碍物出现,那么这个障碍物格子所在的四个四方格上的中心格点机器人都不能走(机器人只走格点)。

所以在读完输入键一个图后,可以再创建一个简化版的图,mini map。它将原图中每四个格点当做一个点,而机器人只走这四个格子的中心,一旦一个四方格中有一个障碍,那么这个四方格认为不可走。这样一来机器人移动、机器人半径、单个方格障碍物问题就简化成了最常见的情况:在一个图上的点避开障碍物到达另一个点的最短路。(这中简化和机器人在原图上的移动是等价的,可以模拟一下)。

以下是这部分处理代码:

	for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
cin >> graph[i][j];
}
} int p = 0,q = 0;
for(int i = 0; i < n-1; ++i) {
q = 0;
for(int j = 0; j < m-1; ++j) {
if(graph[i][j] || graph[i][j+1] || graph[i+1][j] || graph[i+1][j+1])
mini[p][q] = 1;//标记为障碍,否则为 0 表示可达
q++;
}
p++;
}

建出了图,现在考虑状态的转移。此题中,每个节点可以有三种转移情况,向左转,向右转,移动。

每种情况耗时为 1(可以认为是距离,权重)。关于转向问题,可以定义一个方向数组,按顺时针顺序给出北东南西,然后无论朝向那个方位,向左转就是数组索引减一,向右转就是加一,检索方向数组获得新的方位。完成一次转向后,就完成了一次状态转移,将新的节点入队列,这个新的节点在下一次被取出考虑进行转移状态时,他的当前方向就是移动的方向。

宏和数据结构:

#define MAX 50
#define DIR 4
#define N 0
#define E 1
#define S 2
#define W 3 struct Node {
int x,y;
int step = 0;
int d;
Node (int x,int y,int step,int dir) {
this->x = x,this->y = y,this->step = step,this->d = dir;
}
// Node () {}
// int pre = 0;
// int loc = 0;
}; int graph[MAX + 1][MAX + 1];
int mini[MAX + 1][MAX + 1]; //mini graph
int vis[MAX + 1][MAX + 1][DIR];
// N E S W
int dx[] = {-1,0, 1, 0};
int dy[] = {0, 1, 0,-1};
int n,m;

BFS 代码:


Node bfs(int sx,int sy,int tx,int ty,int dir) {
queue<Node> q;
Node start = Node(sx,sy,0,dir);
q.push(start);
// path[pi++] = start;
vis[sx][sy][dir] = 1;
while(!q.empty()) {
Node u = q.front();
q.pop(); if(u.x == tx && u.y == ty) return u; //尝试向左转
if(!vis[u.x][u.y][(u.d-1+DIR)%DIR]) {
vis[u.x][u.y][(u.d-1+DIR)%DIR] = 1;
Node nu = Node(u.x,u.y,u.step+1,(u.d-1+DIR)%DIR);
// nu.pre = u.loc; //记录路径信息
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
//尝试向右转
if(!vis[u.x][u.y][(u.d+1)%DIR]) {
vis[u.x][u.y][(u.d+1)%DIR] = 1;
Node nu = Node(u.x,u.y,u.step+1,(u.d+1)%DIR);
// nu.pre = u.loc;
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
//尝试移动 creep,walk,run
for(int i = 1; i <= 3; ++i) {
Node nu = Node(u.x,u.y,u.step+1,u.d);
//判断是是否有障碍物。只要有一个,就不必移动了。
bool isok = true;
for(int j = 0; j < i; ++j) {
if(mini[nu.x+dx[u.d]*j][nu.y+dy[u.d]*j])
{ isok = false; break; }
}
if(isok == false) break; nu.x += dx[u.d] * i;
nu.y += dy[u.d] * i; if(inrange(nu) && !vis[nu.x][nu.y][nu.d]) {
vis[nu.x][nu.y][nu.d] = 1;
// nu.pre = u.loc;
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
}
}
return Node(-1,-1,-1,-1);
}

其中注释代码是用来记录最短路的路径信息。在这里是我用来测试程序的。

在调试的时候遇到一个 bug 花了我几个小时,机器人移动方式有 creep,walk,run,分别移动 1 、2 、3 步,在移动步数大于 1 时,不能只判断目标节点是否是障碍物,而要判断每一步是否有障碍物。

完整程序:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <stdlib.h>
#include <memory.h>
#include <queue>
using namespace std; #define MAX 50
#define DIR 4
#define N 0
#define E 1
#define S 2
#define W 3 struct Node {
int x,y;
int step = 0;
int d;
Node (int x,int y,int step,int dir) {
this->x = x,this->y = y,this->step = step,this->d = dir;
}
// Node () {}
// int pre = 0;
// int loc = 0;
}; int graph[MAX + 1][MAX + 1];
int mini[MAX + 1][MAX + 1]; //mini graph
int vis[MAX + 1][MAX + 1][DIR];
// N E S W
int dx[] = {-1,0, 1, 0};
int dy[] = {0, 1, 0,-1};
int n,m; // Node path[MAX * MAX + 1];
// int pi = 0; bool inrange(Node nd) {
return nd.x >= 0 && nd.x <= n-2 && nd.y >= 0 && nd.y <= m-2;
} Node bfs(int sx,int sy,int tx,int ty,int dir) {
queue<Node> q;
Node start = Node(sx,sy,0,dir);
q.push(start);
// path[pi++] = start;
vis[sx][sy][dir] = 1;
while(!q.empty()) {
Node u = q.front();
q.pop(); if(u.x == tx && u.y == ty) return u; //尝试向左转
if(!vis[u.x][u.y][(u.d-1+DIR)%DIR]) {
vis[u.x][u.y][(u.d-1+DIR)%DIR] = 1;
Node nu = Node(u.x,u.y,u.step+1,(u.d-1+DIR)%DIR);
// nu.pre = u.loc; //记录路径信息
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
//尝试向右转
if(!vis[u.x][u.y][(u.d+1)%DIR]) {
vis[u.x][u.y][(u.d+1)%DIR] = 1;
Node nu = Node(u.x,u.y,u.step+1,(u.d+1)%DIR);
// nu.pre = u.loc;
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
//尝试移动 creep,walk,run
for(int i = 1; i <= 3; ++i) {
Node nu = Node(u.x,u.y,u.step+1,u.d);
////判断是是否有障碍物。只要有一个,就不必移动了。
bool isok = true;
for(int j = 1; j <= i; ++j) {
if(mini[nu.x+dx[u.d]*j][nu.y+dy[u.d]*j])
{ isok = false; break; }
}
if(isok == false) break; nu.x += dx[u.d] * i;
nu.y += dy[u.d] * i; if(inrange(nu) && !vis[nu.x][nu.y][nu.d]) {
vis[nu.x][nu.y][nu.d] = 1;
// nu.pre = u.loc;
// nu.loc = pi;
// path[pi++] = nu;
q.push(nu);
}
}
}
return Node(-1,-1,-1,-1);
} int main(int argc, char const *argv[])
{
freopen("/home/skipper/Documents/code/刷题/洛谷 OJ/重启/in.txt","r",stdin);
int sx,sy,tx,ty;
char dir;
cin >> n >> m;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
cin >> graph[i][j];
}
} int p = 0,q = 0;
for(int i = 0; i < n-1; ++i) {
q = 0;
for(int j = 0; j < m-1; ++j) {
if(graph[i][j] || graph[i][j+1] || graph[i+1][j] || graph[i+1][j+1])
mini[p][q] = 1;
q++;
}
p++;
}
int d;
cin >> sx >> sy >> tx >> ty >> dir;
switch(dir) {
case 'S': d = S;break;
case 'N': d = N;break;
case 'E': d = E;break;
case 'W': d = W;break;
}; //test 查看 mini map
// for(int i = 0; i < p; ++i) {
// for(int j = 0; j < q; ++j) {
// cout << mini[i][j] << " ";
// }
// cout << endl;
// } Node res = bfs(sx-1,sy-1,tx-1,ty-1,d); //输出路径
// int pp = res.loc;
// do {
// cout << path[pp].x << "," << path[pp].y << endl;
// pp = path[pp].pre;
// }while(pp); cout << res.step << endl;
return 0;
}

如有错误,欢迎指正评论。

作者:Skipper

出处:https://www.cnblogs.com/backwords/p/10542486.html

本博客中未标明转载的文章归作者 Skipper 和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

一道很经典的 BFS 题的更多相关文章

  1. ZOJ2006 一道很尴尬的string操作题

    ZOJ2006(最小表示法) 题目大意:输出第一个字符串的最小字典序字串的下标! 然后我居然想试一试string的erase的能力,暴力一下,然后20msAC了,尴尬的数据.......... #in ...

  2. BZOJ4644: 经典傻逼题【线段树分治】【线性基】

    Description 这是一道经典傻逼题,对经典题很熟悉的人也不要激动,希望大家不要傻逼. 考虑一张N个点的带权无向图,点的编号为1到N. 对于图中的任意一个点集 (可以为空或者全集),所有恰好有一 ...

  3. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  4. HDU 1372 Knight Moves(最简单也是最经典的bfs)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1372 Knight Moves Time Limit: 2000/1000 MS (Java/Othe ...

  5. HDU 1175 连连看(超级经典的bfs之一)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1175 连连看 Time Limit: 20000/10000 MS (Java/Others)     ...

  6. TTTTTTTTTTTT POJ 2112 奶牛与机器 多重二分匹配 跑最大流 建图很经典!!

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 15682   Accepted: 5597 ...

  7. JAVA经典算法40题及解答

    JAVA经典算法40题 [程序1]   题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分 ...

  8. JAVA经典算法40题

    1: JAVA经典算法40题 2: [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 3 ...

  9. JAVA经典算法40题(原题+分析)之分析

    JAVA经典算法40题(下) [程序1]   有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?   1.程序分析:  ...

随机推荐

  1. ovs之组网实验

    介绍 本示例将创建两个OVS实例和两个主机,其中每个OVS上接入一个主机,OVS实例之间有链路连接,形成一个链状拓扑,如图.在OVS组网完成之后,再通过手动方式添加流表,实现网络通信,从而验证实验可行 ...

  2. Python【第一篇】python安装、pip基本用法、变量、输入输出、流程控制、循环

    一.python安装 Ubuntu下 系统版本已经同时安装了python2和python3 如果没有python3,可以参考这个貌似是印度阿三的安装视频:http://v.youku.com/v_sh ...

  3. [WC2007]剪刀石头布(最大流)

    洛古 一句话题意:给定一张图,每两点之间有一条有向边或无向边,把所有无向边定向,使图中三元环个数尽量多 因为原图是一个完全图,假设图中任意三点都能构成三元环,那么途中三元环的个数为:\(\binom{ ...

  4. 洛谷 P1411 树

    最近在做些树形DP练练手 原题链接 大意就是给你一棵树,你可以断开任意数量的边,使得剩下的联通块大小乘积最大. 样例 8 1 2 1 3 2 4 2 5 3 6 3 7 6 8 输出 18 我首先想的 ...

  5. Hadoop生态圈-zookeeper完全分布式部署

    Hadoop生态圈-zookeeper完全分布式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客部署是建立在Hadoop高可用基础之上的,关于Hadoop高可用部署请参 ...

  6. Hadoop启动脚本分析

    Hadoop启动脚本分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 能看到这篇博客的你估计对Hadoop已经有一个系统的了解了,最起码各种搭建方式你应该是会的,不会也没有关系, ...

  7. 使用kqueue的str_cli函数

    void str_cli(FILE *fp, int sockfd) { , isfile; char buf[MAXLINE]; ]; struct timespec ts; struct stat ...

  8. Git——如何将本地项目提交至远程仓库(第一次)

    1.(先进入项目文件夹)通过命令 git init 把这个目录变成git可以管理的仓库. git init 2.把文件添加到版本库中,使用命令 git add .添加到暂存区里面去,不要忘记后面的小数 ...

  9. SQLServer数据库文件由高版本向低版本转换

    这个只能用2012的生成脚本功能,在高级里面把脚本兼容设置成2008,并且选择生成架构和数据(默认是只有架构)拿这个脚本在2008上跑一次就行了 sqlserver 中使用sqlcmd 执行*.sql ...

  10. webpack学习笔记——打包后直接访问页面,图片路径错误

    我说的这种图片路径错误是这样的,运行webpack-dev-server,一切正常,没有错误.当webpack之后,直接打开index页面,报错,图片找不到,找不到的原因是路径错误. 先看我的项目代码 ...