P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q
,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W
决定将棋盘扩大以适应他们的新规则。
小Q
找到了一张由N \times MN×M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q
想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q
还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q
找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数NN和MM,分别表示矩形纸片的长和宽。接下来的NN行包含一个N \ \times MN ×M的0101矩阵,表示这张矩形纸片的颜色(00表示白色,11表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
说明
对于20\%20%的数据,N, M ≤ 80N,M≤80
对于40\%40%的数据,N, M ≤ 400N,M≤400
对于100\%100%的数据,N, M ≤ 2000N,M≤2000
悬线法的强大 甚至不用开dp数组
注意矩形和正方形的写法
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////
const int N=+;
int dp[N][N];
int mp[N][N];
int ri[N][N];
int le[N][N];
int up[N][N]; int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]),up[i][j]=,le[i][j]=j,ri[i][j]=j;
rep(i,,n)
rep(j,,m)
if(mp[i][j]!=mp[i][j-])
le[i][j]=le[i][j-];
rep(i,,n)
repp(j,m-,)
if(mp[i][j]!=mp[i][j+])
ri[i][j]=ri[i][j+]; int ans1=,ans2=;
rep(i,,n)
rep(j,,m)
{
if(i>)
if(mp[i][j]!=mp[i-][j])
{
le[i][j]=max(le[i][j],le[i-][j]);
ri[i][j]=min(ri[i][j],ri[i-][j]);
up[i][j]=up[i-][j]+;
} int d=ri[i][j]-le[i][j]+;
ans2=max(ans2,d*up[i][j]); int d2=min(d,up[i][j]);//写成d2=min(j-le[i][j]+1,up[i][j])就是错的!
ans1=max(ans1,d2*d2);
}
cout<<ans1<<endl<<ans2; return ;
}
P1169 [ZJOI2007]棋盘制作 DP悬线法的更多相关文章
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169 p4147 p2701 p1387 #include<cstdio> #include<algorithm& ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- 【BZOJ】1057 [ZJOI2007]棋盘制作(悬线法)
题目 传送门:QWQ 分析 先把题目给出的矩阵变换一下,如果$ a[i][j] $中$ i+j \mod 2 = 1 $那么就对$ a[i][j] $取一下反. 接着就是求原图中最大的0.1子矩阵 详 ...
- 洛谷P1169 棋盘制作【悬线法】【区间dp】
题目:https://www.luogu.org/problemnew/show/P1169 题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形. 思路:传说中的悬线法!用下面这张图说明一下 ...
- [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]
[luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
随机推荐
- [BZOJ 4818] [SDOI 2017] 序列计数
Description Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数. Alice还希望,这 \(n ...
- Linux内核参数
vm.overcommit_memory 0 - 表示内核将检查是否有足够的可用内存供应用进程使用:如果有足够的可用内存,内存申请允许:否则,内存申请失败,并把错误返回给应用进程. 1 - 表示内核允 ...
- 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)
[BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...
- [PA2014]Druzyny
题目描述 体育课上,n个小朋友排成一行(从1到n编号),老师想把他们分成若干组,每一组都包含编号连续的一段小朋友,每个小朋友属于且仅属于一个组.第i个小朋友希望它所在的组的人数不多于d[i],不少于c ...
- redis的主从模式搭建及注意事项
前言:本文先分享下如何搭建redis的主从模式配置,以及主从模式配置的注意事项.后续会继续分享如何实现一个高可用的redis服务,redis的Sentinel 哨兵模式及集群搭建. 安装: 1,yum ...
- OpenLayers学习笔记(八)— 类似比例尺的距离环(二)
openlayers 3 地图上创建一个距离环,始终以地图中心为中心,每个环之间的距离类似比例尺,随地图缩放而变化. 添加具有覆盖整个范围的特征的虚拟层,其可以被设置为围绕地图中心的环. 这篇是上一篇 ...
- win32: 文本编辑框(Edit)控件响应事件
过去几年,关于文本编辑框(Edit)控件的响应事件,我都是在主程序 while(GetMessage(&messages, NULL, 0, 0)) { ... } 捕获. 总感觉这种方式让人 ...
- EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...
- GIT-windows系统部署git服务器
windows系统部署git服务器 因为需要所以就来利用IIS(Internet Information Service )来进行搭建. 进入正文: 不管你是什么win7.win8.win8.1还是w ...
- Hadoop记录-退役
一.datanode添加新节点 1.在dfs.include文件中包含新节点名称,该文件在名称节点的本地目录下 [白名单] [/app/hadoop/etc/hadoop/dfs.include] 2 ...