图论算法之DFS与BFS
- 概述(总)
- 含义特点
- 应用场景
- dfs
- 连通分量
- 二分图判定
- 二叉树的递归遍历
- bfs
- 求割顶和桥
2.二叉树的层次遍历
- 代码实现
/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (isEnd(n, d)){//一旦搜索深度到达一个结束状态,就返回true
return true;
}
for (Node nextNode in n){//遍历n相邻的节点nextNode
if (!visit[nextNode]){//
visit[nextNode] = true;//在下一步搜索中,nextNode不能再次出现
if (DFS(nextNode, d+1)){//如果搜索出有解
//做些其他事情,例如记录结果深度等
return true;
}
//重新设置成false,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false;
}
}
return false;//本次搜索无解
}
/**
* 广度优先搜索
* @param Vs 起点
* @param Vd 终点
*/
bool BFS(Node& Vs, Node& Vd){
queue<Node> Q;
Node Vn, Vw;
int i; //初始状态将起点放进队列Q
Q.push(Vs);
hash(Vw) = true;//设置节点已经访问过了! while (!Q.empty()){//队列不为空,继续搜索!
//取出队列的头Vn
Vn = Q.front(); //从队列中移除
Q.pop(); while(Vw = Vn通过某规则能够到达的节点){
if (Vw == Vd){//找到终点了!
//把路径记录,这里没给出解法
return true;//返回
} if (isValid(Vw) && !visit[Vw]){
//Vw是一个合法的节点并且为白色节点
Q.push(Vw);//加入队列Q
hash(Vw) = true;//设置节点颜色
}
}
}
return false;//无解
}
- 总结(总)
- DFS适合此类题目:给定初始状态跟目标状态,要求判断从初始状态到目标状态是否有解。
- BFS适合此类题目:给定初始状态跟目标状态,要求从初始状态到目标状态的最短路径。
- 参考资料
图论算法之DFS与BFS的更多相关文章
- 邻接表实现Dijkstra算法以及DFS与BFS算法
//============================================================================ // Name : ListDijkstr ...
- 图的遍历算法:DFS、BFS
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为深度优先搜索(DFS)和广度优先搜索(BFS). DFS(深度优先搜索)算法 Depth-First-Search 深度优先 ...
- 图论相关知识(DFS、BFS、拓扑排序、最小代价生成树、最短路径)
图的存储 假设是n点m边的图: 邻接矩阵:很简单,但是遍历图的时间复杂度和空间复杂度都为n^2,不适合数据量大的情况 邻接表:略微复杂一丢丢,空间复杂度n+m,遍历图的时间复杂度为m,适用情况更广 前 ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 【数据结构与算法笔记04】对图搜索策略的一些思考(包括DFS和BFS)
图搜索策略 这里的"图搜索策略"应该怎么理解呢? 首先,是"图搜索",所谓图无非就是由节点和边组成的,那么图搜索也就是将这个图中所有的节点和边都访问一遍. 其次 ...
- 图论算法-最小费用最大流模板【EK;Dinic】
图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...
- 图论算法-网络最大流【EK;Dinic】
图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...
- 【WIP_S9】图论算法
创建: 2018/06/01 图的概念 有向边 有向图 无向边 无向图 点的次数: 点连接的边的数量 闭路: 起点和重点一样 连接图: 任意两点之间都可到达 无闭路有向图: 没有闭路的有向图 森林: ...
随机推荐
- Hadoop基础-Hadoop的集群管理之服役和退役
Hadoop基础-Hadoop的集群管理之服役和退役 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在实际生产环境中,如果是上千万规模的集群,难免一个一个月会有那么几台服务器出点故 ...
- 在CentOS 上搭建nginx来部署静态页面网站
在centOs 上搭建nginx来部署静态页面网站 一.部署服务器环境 nginx:轻量级.高性能的HTTP及反向代理服务器,占用内存少,并发能力强,相比老牌的apache作为web服务器,性能更加卓 ...
- Java进程线程笔记
什么是并行和并发? 并发和并行是即相似又有区别:(微观) 并行:指两个或多个事件在同一时刻发生: 强调的是时间点. 并发:指两个或多个事件在同一时间段内发生: 强调的是时间段. 进程和线程的区别? 进 ...
- SEO学习知识
监控流量的工具 百度统计 CNZZ 51LA 谷歌分析工具 如何从平台借流量? 竞价(付费).SEO 关键词定位: 定位人:负责人 将公司的业务全部列出来 选词: 根据定位的关键词选择出我们需要优化 ...
- MySQL学习笔记(四)悲观锁与乐观锁
恼骚 最近在搞并发的问题,订单的异步通知和主动查询会存在并发的问题,用到了Mysql数据库的 for update 锁 在TP5直接通过lock(true),用于数据库的锁机制 Db::name('p ...
- oh-my-zsh安装和简单定制
我使用的是deepin系统,deepin的终端做的已经很好了,最近想换一个新的命令的提示符风格.据说oh-my-zsh很好用,花一点时间安装,记录这个过程. oh-my-zsh的安装是非常方便的,安装 ...
- 第二节:如何正确使用WebApi和使用过程中的一些坑
一. 基本调用规则 1. 前提 WebApi的默认路由规则为:routeTemplate: "api/{controller}/{id}", 下面为我们统一将它改为 routeTe ...
- [再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)
(from MathFlow) 设 $A=(a_{ij})$, 且定义 $$\bex \n_A f(A)=\sex{\cfrac{\p f}{\p a_{ij}}}. \eex$$ 试证: (1) $ ...
- 解压unzip的用法
1.把文件解压到当前目录下 [root@instance-q6z0ksfb xmerge_test]# unzip db1.zip 2.把文件解压到指定的目录下,需要用到-d参数. unzip -d ...
- percona-toolkit 之 【pt-online-schema-change】说明【转】
背景: MySQL 大字段的DDL操作:加减字段.索引.修改字段属性等,在5.1之前都是非常耗时耗力的,特别是会对MySQL服务产生影响.在5.1之后随着Plugin Innodb的出现在线加索引的提 ...