传送门


将乘客按照\(D_i\)从小到大排序并重新标号。对于服务站\(j\),如果\(S_j \mod T \in (D_i , D_{i+1})\),那么可以少接一些水,在保证司机有水喝的情况下让编号在\([x,i](x \in [1,i])\)的乘客下车(我们将这个区间称作这个服务区的下车区间),然后到达这个服务站接水。区间\([D_x , D_i]\)之间有服务区也没关系,只要在服务区不接水就可以了。

所以有DP:设\(f_i\)表示考虑了前\(i\)个乘客,最少花费的费用是多少。转移有:①\(f_i = f_{i-1} + \lfloor \frac{X - D_i}{T} \rfloor \times W\),表示第\(i\)个人一直坐到终点;②如果在\((D_i , D_{i+1})\)内有服务站,还有转移\(f_i = \min\limits_{0 \leq j < i} f_j + (i - j) \times W \times cnt + \sum\limits_{k = j + 1}^i C_k\),其中\(cnt\)表示的是\(j+1\)到\(i\)的乘客的最少饮水次数,也就是\(\min\limits_{S_k \mod T \in (D_i , D_{i+1})}\lfloor \frac{S_k}{T} \rfloor\)

对于一些乘客,如果我们已经确定了他们要下车,那么一定是越早下车越好,也就是说所有服务站的下车区间一定无交,所以上面②的转移是正确的。

把\(\sum\limits_{k = j + 1}^i C_k\)变成前缀和,就是一个可以斜率优化的式子,栈维护凸包即可。

#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#define INF 1e18
//This code is written by Itst
using namespace std; #define int long long
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
} #define PII pair < int , int >
#define st first
#define nd second
const int MAXN = 2e5 + 3;
int N , M , X , W , T , top = 1;
int dp[MAXN] , dis[MAXN] , stk[MAXN];
struct machine{
int D , C;
bool operator <(const machine a)const{return D < a.D;}
}now[MAXN]; long double calc(PII A , PII B){
return 1.0 * (A.nd - B.nd) / (B.st - A.st);
} PII create(int x){return PII(-x * W , dp[x] - now[x].C);} bool chk(int a , int b , int c){
PII A = create(a) , B = create(b) , C = create(c);
return calc(A , B) > calc(A , C);
} int calc(PII a , int x){return a.st * x + a.nd;} int get(int X){
int L = 1 , R = top;
while(L < R){
int mid = (L + R) >> 1;
calc(create(stk[mid]) , X) > calc(create(stk[mid + 1]) , X) ? L = mid + 1 : R = mid;
}
return calc(create(stk[L]) , X);
} bool cmp(int a , int b){return a % T < b % T;} signed main(){
#ifndef ONLINE_JUDGE
freopen("eternity.in","r",stdin);
freopen("eternity.out","w",stdout);
#endif
X = read(); N = read(); M = read(); W = read(); T = read();
for(int i = 1 ; i <= N ; ++i)
dis[i] = read();
dis[++N] = X;
for(int i = 1 ; i <= M ; ++i){
now[i].D = read();
now[i].C = read();
}
sort(dis + 1 , dis + N + 1 , cmp);
sort(now + 1 , now + M + 1);
now[M + 1].D = T;
for(int i = 1 ; i <= M ; ++i)
now[i].C = now[i].C + now[i - 1].C;
memset(dp , 0x3f , sizeof(dp));
dp[0] = 0; int pos = 1;
while(pos <= N && dis[pos] % T <= now[1].D) ++pos;
for(int i = 1 ; i <= M ; ++i){
int Min = INF;
while(pos <= N && dis[pos] % T < now[i + 1].D)
Min = min(Min , dis[pos++] / T);
dp[i] = dp[i - 1] + ((X - now[i].D) / T + 1) * W;
if(Min != INF)
dp[i] = min(dp[i] , get(Min) + Min * W * i + now[i].C);
while(top > 1 && chk(stk[top - 1] , stk[top] , i))
--top;
stk[++top] = i;
}
cout << dp[M] + (X / T + 1) * W;
return 0;
}

LOJ2396 JOISC2017 长途巴士 斜率优化的更多相关文章

  1. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  2. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  4. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  5. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

  6. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  7. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  8. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  9. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

随机推荐

  1. Java多线程概念简介 多线程中篇(一)

    Java的线程与操作系统的线程   在线程的相关介绍中,有讲到“线程的实现”分为三种:内核支持,用户级以及两者混合.(这只是一种简要的分类) Java线程在JDK1.2之前,是用户线程实现的 而在JD ...

  2. Jenkins结合.net平台综合之监听git仓库并自动摘取最新代码编译

    前面章节我们讲解了Jenkins结合.net平台工具以及一些第三方工具实现项目自动还原,自动编译,自动测试和自动发布.然而实现自动化还有一个关键的步骤就是监听源码仓库变化然后从仓库拉取最新代码,然后再 ...

  3. SmoOne——开源免费的企业移动OA应用,基于.Net

    一.SmoOne是什么一个开源的移动OA应用 二.语言C# 三.开发环境Visual Studio 四.开发平台Smobiler Designer 五.功能该应用开源代码中包含注册.登录.用户信息等基 ...

  4. HAProxy负载均衡技术

    软件负载均衡一般通过两种方式来实现:基于操作系统的软负载实现和基于第三方应用的软负载实现.LVS就是基于Linux操作系统实现的一种软负载,HAProxy就是开源的并且基于第三应用实现的软负载. HA ...

  5. Python 面向对象之反射

    Python 面向对象之反射 TOC 什么是反射? hasattr getattr setattr delattr 哪些对象可以使用反射 反射的好处 例子一 例子二 什么是反射? 程序可以访问.检查和 ...

  6. Linux基础学习(全)

    使用的Linux发行版本为Redhat 1.Linux(RedHat)基础学习-命令行使用入门 2.Linux(RedHat)基础学习-文件寻址与管理 3.Linux(RadHat)基础学习-vim编 ...

  7. 网络最大流算法—EK算法

    前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题. 但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的 ...

  8. 基于element-tree-table树型表格点击节点请求数据展开树型表格

    效果: 引用CSS.JS: Vue.element-ui.Axios treeTable: https://github.com/ProsperLee/element-tree-grid 模拟根据父i ...

  9. angular打包后路由和文件路径不对

    base href换成如下script标签 <!-- <base href="/"> --> <script> document.write(' ...

  10. 安装完成Dynamics 365 CE后别忘了更改维护作业的运行时间

    摘要: 微软动态CRM专家罗勇 ,回复309或者20190308可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 安装完毕Dy ...