LOJ2396 JOISC2017 长途巴士 斜率优化
将乘客按照\(D_i\)从小到大排序并重新标号。对于服务站\(j\),如果\(S_j \mod T \in (D_i , D_{i+1})\),那么可以少接一些水,在保证司机有水喝的情况下让编号在\([x,i](x \in [1,i])\)的乘客下车(我们将这个区间称作这个服务区的下车区间),然后到达这个服务站接水。区间\([D_x , D_i]\)之间有服务区也没关系,只要在服务区不接水就可以了。
所以有DP:设\(f_i\)表示考虑了前\(i\)个乘客,最少花费的费用是多少。转移有:①\(f_i = f_{i-1} + \lfloor \frac{X - D_i}{T} \rfloor \times W\),表示第\(i\)个人一直坐到终点;②如果在\((D_i , D_{i+1})\)内有服务站,还有转移\(f_i = \min\limits_{0 \leq j < i} f_j + (i - j) \times W \times cnt + \sum\limits_{k = j + 1}^i C_k\),其中\(cnt\)表示的是\(j+1\)到\(i\)的乘客的最少饮水次数,也就是\(\min\limits_{S_k \mod T \in (D_i , D_{i+1})}\lfloor \frac{S_k}{T} \rfloor\)
对于一些乘客,如果我们已经确定了他们要下车,那么一定是越早下车越好,也就是说所有服务站的下车区间一定无交,所以上面②的转移是正确的。
把\(\sum\limits_{k = j + 1}^i C_k\)变成前缀和,就是一个可以斜率优化的式子,栈维护凸包即可。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
#define INF 1e18
//This code is written by Itst
using namespace std;
#define int long long
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
#define PII pair < int , int >
#define st first
#define nd second
const int MAXN = 2e5 + 3;
int N , M , X , W , T , top = 1;
int dp[MAXN] , dis[MAXN] , stk[MAXN];
struct machine{
int D , C;
bool operator <(const machine a)const{return D < a.D;}
}now[MAXN];
long double calc(PII A , PII B){
return 1.0 * (A.nd - B.nd) / (B.st - A.st);
}
PII create(int x){return PII(-x * W , dp[x] - now[x].C);}
bool chk(int a , int b , int c){
PII A = create(a) , B = create(b) , C = create(c);
return calc(A , B) > calc(A , C);
}
int calc(PII a , int x){return a.st * x + a.nd;}
int get(int X){
int L = 1 , R = top;
while(L < R){
int mid = (L + R) >> 1;
calc(create(stk[mid]) , X) > calc(create(stk[mid + 1]) , X) ? L = mid + 1 : R = mid;
}
return calc(create(stk[L]) , X);
}
bool cmp(int a , int b){return a % T < b % T;}
signed main(){
#ifndef ONLINE_JUDGE
freopen("eternity.in","r",stdin);
freopen("eternity.out","w",stdout);
#endif
X = read(); N = read(); M = read(); W = read(); T = read();
for(int i = 1 ; i <= N ; ++i)
dis[i] = read();
dis[++N] = X;
for(int i = 1 ; i <= M ; ++i){
now[i].D = read();
now[i].C = read();
}
sort(dis + 1 , dis + N + 1 , cmp);
sort(now + 1 , now + M + 1);
now[M + 1].D = T;
for(int i = 1 ; i <= M ; ++i)
now[i].C = now[i].C + now[i - 1].C;
memset(dp , 0x3f , sizeof(dp));
dp[0] = 0; int pos = 1;
while(pos <= N && dis[pos] % T <= now[1].D) ++pos;
for(int i = 1 ; i <= M ; ++i){
int Min = INF;
while(pos <= N && dis[pos] % T < now[i + 1].D)
Min = min(Min , dis[pos++] / T);
dp[i] = dp[i - 1] + ((X - now[i].D) / T + 1) * W;
if(Min != INF)
dp[i] = min(dp[i] , get(Min) + Min * W * i + now[i].C);
while(top > 1 && chk(stk[top - 1] , stk[top] , i))
--top;
stk[++top] = i;
}
cout << dp[M] + (X / T + 1) * W;
return 0;
}
LOJ2396 JOISC2017 长途巴士 斜率优化的更多相关文章
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...
- 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP
第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
随机推荐
- 查看服务器运行多少个ASP.NET Core程序
有时候,我们会想知道某台机器上面跑了什么程序. 当程序部署到IIS上面的时候,我们只需要打开IIS一看,就知道有多少个站点在运行了. 当我们在CentOS上面部署的时候,就没那么的直观了. 当然对于熟 ...
- DHTMLX 常用技术
GRID的行设置前景色和背景色 $dataItem->set_row_color("red"); // 设置背景色 $dataItem->set_row_style(& ...
- Xamarin.Forms 开发资源集合(复制)
复制:https://www.cnblogs.com/mschen/p/10199997.html 收集整理了下 Xamarin.Forms 的学习参考资料,分享给大家,稍后会不断补充: UI样式 S ...
- 原生js获取元素非行内样式属性的方法
获取当前对象的样式DOM标准中的全局方法 getComputedStyle(obj).width (获取元素的宽度),但在非标准IE浏览器(IE8)以下有兼容问题IE8以下要这样写 obj.curre ...
- 驰骋工作流引擎JFlow与activiti的对比之4种高级分支同步模式
多重选择(Multiple Choice) 在流程中,当一个活动完成后,有多个分支进行选择,可以选择执行其中的一个或者N个分支. 例子:比如去世博园玩,在门口检票后,可以选择A-E个片区中的N个进行观 ...
- Access denied for user 'root'@'localhost' (using password:YES) Mysql5.7
解决方案: (1) 打开MySQL目录下的my.ini文件,在文件的最后添加一行“skip-grant-tables”,保存并关闭文件.(my.ini在C:\ProgramData\MySQL\MyS ...
- Java内存管理的进一步理解-模拟过程图解
Java内存管理的进一步理解-模拟过程图解--转载 java的内存管理分为: 1.堆内存:2.栈内存:3.方法区:4.本地方法区 /* 1:方法区 方法区存放装载的类数据信息包括: ...
- C#的String.Split 分割字符串用法详解的代码
代码期间,把代码过程经常用的内容做个珍藏,下边代码是关于C#的String.Split 分割字符串用法详解的代码,应该对码农们有些用途. 1) public string[] Split(params ...
- Bootstrap-table表格初始化表格数据
一.项目说明 ①此项目是ASP.NET项目,开发语言是C# ②bootstrap-table使用需要下载对应的css和js插件 ③具体详情还需查看api文档 二.前端代码 <div class= ...
- (办公)json报错的解决问题的小经验.
经验:一半,一半的查,看那一段报错,当确定这一步的时候,用最笨的方法,用眼去看,出哪里的错误. 看有没有替换特殊字符的方法,去整理.