【bzoj2318】Spoj4060 game with probability Problem
题目描述
Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。
现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。
输入
第一行一个正整数t,表示数据组数。
对于每组数据,一行三个数n,p,q。
输出
对于每组数据输出一行一个实数,表示Alice胜利的概率,保留6位小数。
样例输入
1
1 0.5 0.5
样例输出
0.666667
提示
概率dp
这题真是巨坑。。。
f[i]表示i块石头先投者获胜的概率,g[i]表示i块石头后投者获胜的概率。
易推出:
$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}$
$g[i]=\frac{q_0·f[i-1]+(1-q_0)·p_0·g[i-1]}{1-(1-p_0)·(1-q_0)}$
然而这里$p_0$和$q_0$都是目标概率,而题目中的p和q都是几率,
所以需要根据情况决定是否想要正面朝上。
根据方程的推导:
A想让自己获胜的概率最大,即让$f[i]$最大。
假设$g[i-1]-f[i-1]$不等于$0$,把$f[i]$的推导式展开,得:
$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}\\\ \ \ \ \ \ =\frac{(p_0+q_0-p_0·q_0)·f[i-1]+p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac{p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{p_0+q_0-p_0·q_0}{p_0(g[i-1]-f[i-1])}}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{1-q_0+\frac{q_0}{p_0}}{g[i-1]-f[i-1]}}$
显然当$g[i-1]-f[i-1]>0$时,$p_0$越大越好;当$g[i-1]-f[i-1]<0$时,$p_0$越小越好。
$q_0$的推导同理。
于是可以得到结论:
当f[i-1]<g[i-1]时,都想要正面朝上,$p_0=p$,$q_0=q$;
当f[i-1]>g[i-1]时,都不想要正面朝上,$p_0=1-p$,$q_0=1-q$。
但是n太大肿么办?
于是用到概率黑科技:
当n越来越大时,f[n]逐渐趋近于一个定值,而且题目中只要求保留6位小数。
所以就此题而言f[1000+k]可以近似等于f[1000]。
#include <cstdio>
#include <cstring>
double f[1001] , g[1001];
int main()
{
int t;
scanf("%d" , &t);
while(t -- )
{
int n , i;
double p , q;
scanf("%d%lf%lf" , &n , &p , &q);
memset(f , 0 , sizeof(f));
memset(g , 0 , sizeof(g));
if(n > 1000)
n = 1000;
f[0] = 0;
g[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
f[i] = (p * g[i - 1] + (1 - p) * q * f[i - 1]) / (1 - (1 - p) * (1 - q));
g[i] = (q * f[i - 1] + (1 - q) * p * g[i - 1]) / (1 - (1 - p) * (1 - q));
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
}
printf("%.6lf\n" , f[n]);
}
return 0;
}
【bzoj2318】Spoj4060 game with probability Problem的更多相关文章
- 【BZOJ2318】Spoj4060 game with probability Problem 概率
[BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...
- 【bzoj2318】Spoj4060 game with probability Problem 概率dp
题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...
- 【BZOJ 2318】 2318: Spoj4060 game with probability Problem(概率DP)
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 371 Sol ...
- BZOJ2318: Spoj4060 game with probability Problem
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #i ...
- BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )
概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...
- 【CF954I】Yet Another String Matching Problem(FFT)
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...
- 2318: Spoj4060 game with probability Problem
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 356 Sol ...
- Bzoj 2318 Spoj4060 game with probability Problem
2318: Spoj4060 game with probability Problem Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 524 Sol ...
- 【概率论】2-1:条件概率(Conditional Probability)
title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...
随机推荐
- 三维等值面提取算法(Dual Contouring)
上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- 第23章 java线程通信——生产者/消费者模型案例
第23章 java线程通信--生产者/消费者模型案例 1.案例: package com.rocco; /** * 生产者消费者问题,涉及到几个类 * 第一,这个问题本身就是一个类,即主类 * 第二, ...
- jquery的回调对象Callbacks详解
Callbacks : 对函数的统一管理 Callbacks的options参数接受4个属性,分别是once : 只执行一次momery : 记忆stopOnFalse : 强制退出循环unique ...
- Win10 Sql2008R2 在关闭【0x80041033】
以前SQL Server 2008 不能登陆的时候,总是通过“计算机管理”→“SQL Server服务”更改一下,"SQL Server(MSSQLSERVER)".可是现在出现的 ...
- C#进阶系列——MEF实现设计上的“松耦合”(终结篇:面向接口编程)
序:忙碌多事的八月带着些许的倦意早已步入尾声,金秋九月承载着抗战胜利70周年的喜庆扑面而来.没来得及任何准备,似乎也不需要任何准备,因为生活不需要太多将来时.每天忙着上班.加班.白加班,忘了去愤,忘了 ...
- 软件工程(FZU2015)赛季得分榜,第八回合
目录 第一回合 第二回合 第三回合 第四回合 第五回合 第6回合 第7回合 第8回合 第9回合 第10回合 第11回合 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分 ...
- sql特殊语句
1.联表查询 select * from zongyi zongyiitem where zongyi.id=zongyiitem.id 2.联表删除 delete from zongyi ,zong ...
- Asp.Net Core 项目搭建 基础配置 和MySql 的使用
一.开发环境准备 1.安装Visual Studio 2015,我这里安装的是专业版. 2.安装.NET Core SDK相关 需要安装 Visual Studio 2015 update3和NET ...
- springmvc请求接收参数的几种方法
一.通过@PathVariable获取路径中的参数 @RequestMapping(value="user/{id}/{name}",method=RequestMethod.GE ...