1. 模型的偏差以及方差:

模型的偏差:是一个相对来说简单的概念:训练出来的模型在训练集上的准确度。

模型的方差:模型是随机变量。设样本容量为n的训练集为随机变量的集合(X1, X2, ..., Xn),那么模型是以这些随机变量为输入的随机变量函数(其本身仍然是随机变量):F(X1, X2, ..., Xn)。抽样的随机性带来了模型的随机性。

  我们认为方差越大的模型越容易过拟合:假设有两个训练集A和B,经过A训练的模型Fa与经过B训练的模型Fb差异很大,这意味着Fa在类A的样本集合上有更好的性能,而Fb在类B的训练样本集合上有更好的性能,这样导致在不同的训练集样本的条件下,训练得到的模型的效果差异性很大,很不稳定,这便是模型的过拟合现象,而对于一些弱模型,它在不同的训练样本集上 性能差异并不大,因此模型方差小,抗过拟合能力强,因此boosting算法就是基于弱模型来实现防止过拟合现象。

  我们常说集成学习框架中的基模型是弱模型,通常来说弱模型是偏差高(在训练集上准确度低),方差小(防止过拟合能力强)的模型。但是,并不是所有集成学习框架中的基模型都是弱模型。bagging和stacking中的基模型为强模型(偏差低方差高),boosting中的基模型为弱模型。

  在bagging和boosting框架中,通过计算基模型的期望和方差,我们可以得到模型整体的期望和方差。为了简化模型,我们假设基模型的权重、方差及两两间的相关系数相等。由于bagging和boosting的基模型都是线性组成的,那么有:

          

2. bagging的偏差和方差

  对于bagging来说,每个基模型的权重等于1/m且期望近似相等(子训练集都是从原训练集中进行子抽样),故我们可以进一步化简得到:

          

  根据上式我们可以看到,整体模型的期望近似于基模型的期望,这也就意味着整体模型的偏差和基模型的偏差近似。同时,整体模型的方差小于等于基模型的方差(当相关性为1时取等号),随着基模型数(m)的增多,整体模型的方差减少,从而防止过拟合的能力增强,模型的准确度得到提高。但是,模型的准确度一定会无限逼近于1吗?并不一定,当基模型数增加到一定程度时,方差公式第二项的改变对整体方差的作用很小,防止过拟合的能力达到极限,这便是准确度的极限了。另外,在此我们还知道了为什么bagging中的基模型一定要为强模型,否则就会导致整体模型的偏差度低,即准确度低。

  Random Forest是典型的基于bagging框架的模型,其在bagging的基础上,进一步降低了模型的方差。Random Fores中基模型是树模型,在树的内部节点分裂过程中,不再是将所有特征,而是随机抽样一部分特征纳入分裂的候选项。这样一来,基模型之间的相关性降低,从而在方差公式中,第一项显著减少,第二项稍微增加,整体方差仍是减少。

3. boosting的偏差和方差

  对于boosting来说,基模型的训练集抽样是强相关的,那么模型的相关系数近似等于1,故我们也可以针对boosting化简公式为:

          

通过观察整体方差的表达式,我们容易发现,若基模型不是弱模型,其方差相对较大,这将导致整体模型的方差很大,即无法达到防止过拟合的效果。因此,boosting框架中的基模型必须为弱模型。

  因为基模型为弱模型,导致了每个基模型的准确度都不是很高(因为其在训练集上的准确度不高)。随着基模型数的增多,整体模型的期望值增加,更接近真实值,因此,整体模型的准确度提高。但是准确度一定会无限逼近于1吗?仍然并不一定,因为训练过程中准确度的提高的主要功臣是整体模型在训练集上的准确度提高,而随着训练的进行,整体模型的方差变大,导致防止过拟合的能力变弱,最终导致了准确度反而有所下降。

  基于boosting框架的Gradient Tree Boosting模型中基模型也为树模型,同Random Forrest,我们也可以对特征进行随机抽样来使基模型间的相关性降低,从而达到减少方差的效果。

4. 模型的独立性

  衡量模型之间独立性:抽样的随机性决定了模型的随机性,如果两个模型的训练集抽样过程不独立,则两个模型则不独立,bagging中基模型的训练样本都是独立的随机抽样,但是基模型却不一定独立,因为我们讨论模型的随机性时,抽样是针对于样本的整体。而bagging中的抽样是针对于训练集(整体的子集),所以并不能称其为对整体的独立随机抽样。那么到底bagging中基模型的相关性体现在哪呢?总结下bagging的抽样为两个过程:

  1. 样本抽样:整体模型F(X1, X2, ..., Xn)中各输入随机变量(X1, X2, ..., Xn)对样本的抽样
  2. 子抽样:从整体模型F(X1, X2, ..., Xn)中随机抽取若干输入随机变量成为基模型的输入随机变量

  假若在子抽样的过程中,两个基模型抽取的输入随机变量有一定的重合,那么这两个基模型对整体样本的抽样将不再独立,这时基模型之间便具有了相关性。

模型的偏差bias以及方差variance的更多相关文章

  1. 偏差(Bias)和方差(Variance)——机器学习中的模型选择zz

    模型性能的度量 在监督学习中,已知样本 ,要求拟合出一个模型(函数),其预测值与样本实际值的误差最小. 考虑到样本数据其实是采样,并不是真实值本身,假设真实模型(函数)是,则采样值,其中代表噪音,其均 ...

  2. 机器学习中的偏差(bias)和方差(variance)

    转发:http://blog.csdn.net/mingtian715/article/details/53789487请移步原文 内容参见stanford课程<机器学习>   对于已建立 ...

  3. 机器学习(二十四)— 偏差Bias 与方差Variance

    1.首先 Error = Bias + Variance  Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模 ...

  4. 标准差(bias) 方差(variance)

    偏差(bias) 偏差度量了学习算法的期望预测与真实结果的偏离程序, 即 刻画了学习算法本身的拟合能力 . 方差(variance) 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即 刻画 ...

  5. 斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)

    针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减 ...

  6. 【概率论】4-3:方差(Variance)

    title: [概率论]4-3:方差(Variance) categories: - Mathematic - Probability keywords: - Variance - Standard ...

  7. C++ - Vector 计算 均值(mean) 和 方差(variance)

    Vector 计算 均值(mean) 和 方差(variance) 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24623187 ...

  8. 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)

    误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...

  9. 斯坦福大学公开课机器学习:advice for applying machine learning | learning curves (改进学习算法:高偏差和高方差与学习曲线的关系)

    绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制 ...

随机推荐

  1. OpenGl 坐标转换 (转载)

    OpenGl 坐标转换 (转载) 1. OpenGL 渲染管线 OpenGL渲染管线分为两大部分,模型观测变换(ModelView Transformation)和投影变换(Projection Tr ...

  2. Latex中Matlab代码的环境

    需要用到listings宏包 使用方法: 导言区\usepackage{listings}\lstset{language=Matlab}      %代码语言使用的是matlab\lstset{br ...

  3. Android-Xml文件生成,Xml数据格式写入

    在上一篇博客,Android-XML格式描述,介绍来XML在Android中的格式: 生成xml文件格式数据,Android提供了Xml.newSerializer();,可以理解为Xml序列化: 序 ...

  4. Android 了解1G 2G 3G 知识

    了解1G 2G 3G 相关知识,对网络通讯制式进行了解即可 1.这种网络通讯制式是一步一步发展起来的,由最开始的1G(最典型的手机,例如:大哥大,1G这种制式只能语音通话). 2.后来出现的2G,2G ...

  5. 使用jetty-maven-plugin运行maven多项目

    1.准备工作 org.eclipse.jetty   jetty-maven-plugin    9.2.11.v20150529 jdk  1.7 maven  3.1 2.采用maven管理多项目 ...

  6. 【转】PHP操作MongoDB【NoSQL】

    原文:http://blog.sina.com.cn/s/blog_4b67d3240101519b.html 一.MongoDB简介 MongoDB (名称来自"humongous&quo ...

  7. IDEA13 SVN配置

    这个算是解决了,idea13是支持svn 1.8. 步骤: 1.下载svn客户端软件,小乌龟:TortoiseSVN.安装的时候,一定要选择安装svn命令行的那个选项.当前版本1.8默认只会忽略命令行 ...

  8. VSTS 更名为 Azure DevOps

    微软正式对外宣布Azure DevOps,其实就是原来的VSTS,我们来看一下Azure DevOps的介绍: 今天我们宣布Azure DevOps.与世界各地的客户和开发人员合作,很明显,DevOp ...

  9. Sql 辅助

    1.清空数据表 SELECT 'TRUNCATE TABLE '+name AS TruncateSql FROM sys.tables

  10. .Net Core在Middleware中解析RouteData

    在ASP.Net Core中,如果直接在Middleware中获取RouteData返回的是空值,这是因为RouterMiddleware还没执行.但有些情况下需要获取RouteData,这要怎么做呢 ...