Overfitting & Regularization

The Problem of overfitting

A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.

Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.

In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.

Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.

Lambda

Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.

Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.

Regularization methods (L1 & L2)

The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).

L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.

However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.

It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.

As you can see, regularization can be a powerful tool for reducing overfitting.

In the words of the great thinkers:

An in-depth look into theory and application of regularization.

Overfitting & Regularization的更多相关文章

  1. machine learning(13) -- solving the problem of overfitting:regularization

    solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...

  2. 深度学习(一)cross-entropy softmax overfitting regularization dropout

    一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...

  3. Stanford机器学习笔记-3.Bayesian statistics and Regularization

    3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...

  4. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  5. Notes : <Hands-on ML with Sklearn & TF> Chapter 1

    <Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...

  6. 斯坦福大学CS224d课程目录

    https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...

  7. 过拟合(Overfitting)和正规化(Regularization)

    过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...

  8. 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. How to avoid Over-fitting using Regularization?

    http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...

随机推荐

  1. 14_Java面向对象_第14天(Eclipse高级、类与接口作为参数返回值)_讲义

    今日内容介绍 1.Eclipse常用快捷键操作 2.Eclipse文档注释导出帮助文档 3.Eclipse项目的jar包导出与使用jar包 4.不同修饰符混合使用细节 5.辨析何时定义变量为成员变量 ...

  2. SqlHelper类的编写

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  3. vSphere Client 连接ESXi 或者是vCenter 时虚拟机提示VMRC异常的解决办法

    1. 自己的vSphere 连接vCenter 向管理虚拟机 结果发现总是有异常. 提示如图示 VMRC控制台的连接已经断开 2. 花了比较长的时间也没搞定. 后来百度发现 关闭一个进程 然后重新登录 ...

  4. 关于MyEclipse,JDK使用的几点收获

    [1]MyEclipse如何修改JDK编译版本信息 首先打开MyEclipse——>windows——>preference(也就是 窗口——>首选项:可以在搜索框中输入JDK,查找 ...

  5. app流畅度测试--使用手机自带功能

    1.进入开发者选项,在“监控”选项卡找到“GPU呈现模式分析”的选项 2.开启后,即可以条形图和线形图的方式显示系统的界面相应速度 3.那么要如何根据曲线判断系统是否流畅呢?实际上这个曲线表达的是GP ...

  6. HDU2883_kebab

    很好的题目. 有不多于200个任务,每个任务要在si到ei这个时间段内完成,每个任务的任务量是ti*ni,只有一台机器,且其单位时间内可完成的任务量为m. 现在问你,能否使所有的任务全部在规定的时间段 ...

  7. vue项目使用eslint

    转载自 https://www.cnblogs.com/hahazexia/p/6393212.html eslint配置方式有两种: 注释配置:使用js注释来直接嵌入ESLint配置信息到一个文件里 ...

  8. 触发Full GC执行的情况 以及其它补充信息

    除直接调用System.gc外,触发Full GC执行的情况有如下四种.1. 旧生代空间不足旧生代空间只有在新生代对象转入及创建为大对象.大数组时才会出现不足的现象,当执行Full GC后空间仍然不足 ...

  9. office 格式刷双击无法启用连刷模式

    1.问题所在是双击被设置太快了导致office无法接受,请设置成下图中的中等速度即可. 2.可使用快捷键代替 Ctrl+Shift+c(复制格式)Ctrl+Shift+v(粘贴格式)

  10. 【BZOJ4247】挂饰(动态规划)

    [BZOJ4247]挂饰(动态规划) 题面 BZOJ 题解 设\(f[i][j]\)表示前\(i\)个物品中还剩下\(j\)个挂钩时的最大答案. 转移显然是一个\(01\)背包,要么不选:\(f[i] ...