Overfitting & Regularization
Overfitting & Regularization
The Problem of overfitting
A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.
Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.
In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.
Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.
Lambda
Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.
Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.
Regularization methods (L1 & L2)
The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).
L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.
However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.
It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.
As you can see, regularization can be a powerful tool for reducing overfitting.
In the words of the great thinkers:
An in-depth look into theory and application of regularization.
Overfitting & Regularization的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 深度学习(一)cross-entropy softmax overfitting regularization dropout
一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出 简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 1
<Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...
- 斯坦福大学CS224d课程目录
https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...
- 过拟合(Overfitting)和正规化(Regularization)
过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- How to avoid Over-fitting using Regularization?
http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...
随机推荐
- JAVA 构造函数 静态变量
class HelloA { public HelloA() { System.out.println("HelloA"); } { System.out.println(&quo ...
- vm的三种网络模式
Vm网卡的模式:网络地址转换模式(nat),仅主机(host-only),桥接模式(Brideged) VMware 的几个虚拟设备: ■ VMnet0:这是 VMware 用于虚拟桥接网络下的虚拟交 ...
- mysql 数据到 导入导出 总结
数据库数据的导入和导出受secure_file_priv配置项影响#限制导入导出,null时无法进行数据的导入导出,空时不限制,设置了目录则只能对该目录下的文件进行导入导出show variables ...
- spring ioc和aop的理解
IOC,依赖倒置的意思,所谓依赖,从程序的角度看,就是比如A要调用B的方法,那么A就依赖于B,反正A要用到B,则A依赖于B.所谓倒置,你必须理解如果不倒置,会怎么着,因为A必须要有B,才可以调用B,如 ...
- Python基础:Python函数、文件操作、递归
函数参数 函数参数包括位置参数,关键字参数,动态参数(*args, **args)三种. 传参的过程是形式参数的赋值. *args传入的参数是元组形式,**args传入的参数是字典形式. 示例代码如下 ...
- 使用Fiddler重定向App的网络请求
前言 开发中手机app只能访问生产环境地址,所以给开发调试带来不便,可以通过Fiddler的代理和urlreplace方式解决. 步骤 1.开启Fiddler的代理模式Tools->Teleri ...
- DispatcherServlet的url mapping为“/”时,对根路径访问的处理
背景 众所周知,Tomcat的Default Servlet的servlet-mapping为 <servlet-mapping> <servlet-name>default& ...
- Visual Studio Code运行Python文件出现 “Linter pylint is not installed ”提示解决办法
运行Python代码后出现 “Linter pylint is not installed ”提示 只需要添加一行代码就可以解决 { "python.pythonPath": &q ...
- MT【120】保三角函数
评:1.这里处理第三个函数时用到$ab-a-b=(a-1)(b-1)-1$是处理$ab,a+b$之间加减的常见变形. 2.第二个函数$g(x)=sinx,x\in(0,\frac{5\pi}{6})$ ...
- 【NOI】荷马史诗
追逐影子的人,自己就是影子 ——荷马 Allison最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由<奥德赛>和< ...