Overfitting & Regularization

The Problem of overfitting

A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.

Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.

In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.

Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.

Lambda

Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.

Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.

Regularization methods (L1 & L2)

The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).

L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.

However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.

It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.

As you can see, regularization can be a powerful tool for reducing overfitting.

In the words of the great thinkers:

An in-depth look into theory and application of regularization.

Overfitting & Regularization的更多相关文章

  1. machine learning(13) -- solving the problem of overfitting:regularization

    solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...

  2. 深度学习(一)cross-entropy softmax overfitting regularization dropout

    一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...

  3. Stanford机器学习笔记-3.Bayesian statistics and Regularization

    3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...

  4. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  5. Notes : <Hands-on ML with Sklearn & TF> Chapter 1

    <Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...

  6. 斯坦福大学CS224d课程目录

    https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...

  7. 过拟合(Overfitting)和正规化(Regularization)

    过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...

  8. 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. How to avoid Over-fitting using Regularization?

    http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...

随机推荐

  1. javascript修改div大小遮挡页面渲染问题

    页面中引入了其他js文件,浏览器窗口改变,页面没有跟随渲染问题.最后找到原因是因为这个js方法少了最后一行: "right": RightBox_w. window.onresiz ...

  2. 初入React(一)

    React:是2013年Facebook在github上的一个开源js库,它将用户界面抽象为一个个组件,再由开发者将其组合成页面.它不是完整的MVC/MVVM框架,专注于提供清晰.简洁的view层解决 ...

  3. SOAP 缓存问题

    今天在进行soap调用老是出错,去其他人的机器上试下,就好了,下面是从网上找到的原因 一开始不知道还有SOAP缓存.因为类文件改变了,重新生成了WSDL文件,测试运行,竟然不能通过.给我的第一感觉是W ...

  4. delphi如何检索adoquery里面某一列存在的重复行?

    var IsHave:Boolean; begin adoquery.first; while(not adoquery.eof) do begin if(adoquery.fieldbyname(' ...

  5. 重新认识javascript的settimeout和异步

    1.简单的settimeout setTimeout(function () { while (true) { } }, 1000); setTimeout(function () { alert(' ...

  6. HDU4240_Route Redundancy

    题目很简单.给一个有向图,求两点间的最大流量与任意一条路中的最大流量的比值. 最大流不说了,求出单条流量最大的路径可以用类似Spfa的方法来搞,保存到达当前点的最大流量,一直往下更新即可. 召唤代码君 ...

  7. 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  8. 【linux之文件查看,操作,权限管理】

    一.shell如何处理命令 1.shell会根据在命令中出现的空格字符,将命令划分为多个部分 2.判断第一个字段是内部命令还是外部命令 内部命令:内置于shell的命令(shell builtin) ...

  9. Reactor模式,或者叫反应器模式 - 为什么用多路io复用提供吞吐量

    Reactor这个词译成汉语还真没有什么合适的,很多地方叫反应器模式,但更多好像就直接叫reactor模式了,其实我觉着叫应答者模式更好理解一些.通过了解,这个模式更像一个侍卫,一直在等待你的召唤,或 ...

  10. Git-balabala

    想必大家都听说过且用过Github(没听说过-.-),我也一直用Github管理我的代码到现在,如果你只是将其作为自己私有的代码仓库,那么平时用得最多的就是git clone, git add以及gi ...