Overfitting & Regularization
Overfitting & Regularization
The Problem of overfitting
A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.
Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.
In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.
Below is the linear regression cost function with an added regularization component.
The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.
Lambda
Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.
Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.
Regularization methods (L1 & L2)
The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).
L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.
However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.
It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.
As you can see, regularization can be a powerful tool for reducing overfitting.
In the words of the great thinkers:
An in-depth look into theory and application of regularization.
Overfitting & Regularization的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 深度学习(一)cross-entropy softmax overfitting regularization dropout
一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出 简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 1
<Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...
- 斯坦福大学CS224d课程目录
https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...
- 过拟合(Overfitting)和正规化(Regularization)
过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- How to avoid Over-fitting using Regularization?
http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...
随机推荐
- diliucizuoye
NABCD N(Need 需求) 互联网的高速发展,造就了二十一世纪这个追求高品质.高体验的信息时代,随其发展改变的是信息记录与分享方式,从传统的面对面交流.手机通话.写日记本,到现如今的社交平台.信 ...
- 深入理解JAVA集合系列三:HashMap的死循环解读
由于在公司项目中偶尔会遇到HashMap死循环造成CPU100%,重启后问题消失,隔一段时间又会反复出现.今天在这里来仔细剖析下多线程情况下HashMap所带来的问题: 1.多线程put操作后,get ...
- 正确的姿势解决IE弹出证书错误页面
在遇到IE证书问题时,正确的解法是安装证书到受信任的储存区 1.继续浏览此网站 2.进入页面后,点击地址栏的证书错误,查看证书 3.安装,设置安装到受信任的颁发机构 4.OK
- ORACLE LOG的管理
CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...
- 2018最新Web前端经典面试试题及答案
javascript: JavaScript中如何检测一个变量是一个String类型?请写出函数实现 typeof(obj) === "string" typeof obj === ...
- 关于对JSON.parse()与JSON.stringify()的理解
JSON.parse()与JSON.stringify()的区别 JSON.parse()[从一个字符串中解析出json对象] 例子: //定义一个字符串 var data='{"nam ...
- From 易水寒 格局越大 人生越宽
有这么一则故事:三个泥瓦匠在砌墙,一个人走过来,问他们在干什么. 第一个泥瓦匠没好气地说,你没看见吗?我在辛苦地砌墙呢.第二个回答,我们正在建一座高楼.第三个则洋溢着喜悦说,我们正在创造美好生活. 1 ...
- [Oracle] 11.2.0.1 的客户端无法连接12.2.0.1 的DB端 28040
最近有一个应用服务器安装上了 11.2.0.1 的oracle DB端 又想当 客户端用来 注册 oracle12.2.0.1的DB端发现不行 但是很奇怪 报的错误竟然是 ora 01017 密码错误 ...
- day1 学习历程
day1 我是一个在校大三学生,一个依然迷茫不知前景的大学混子= =,可以这么说吧 大学混子 真正开始决定好好学习大概在去年的12月份 那时经老师的提醒 开始正式接触软件开发 于是 从头开始学习语言 ...
- java 数据结构与算法---栈
原理来自百度百科 一.栈的定义 栈是一种只能在一端进行插入和删除操作的特殊线性表:它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数 ...