Description

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

Input

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数
接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

Output

一行一个整数,表示最多能删除多少节点。

Sample Input

10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0

Sample Output

4

HINT

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m
 
说是树形DP,其实本质还算贪心……
很容易发现,每个点删掉后对父亲的贡献为Son[x]+a[x]-1
而你删除点x,最多会对Father[x]产生影响,再往上的节点很容易发现就不会受到影响了
(画个图感性体会一下什么都好说)
所以对于点x来说,按儿子Cost从小到大删除
因为如果你不删除儿子的话,最好的情况就是可以在下一步删除x
那样还不如删除儿子,反正儿子要删除的话至少会删除一个
当然如果所有儿子都没法删除那就没办法了QvQ
 
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define N (2000000+100)
using namespace std;
struct node
{
int to,next;
}edge[N*];
int a[N],b[N],Son[N],Father[N],Cost[N];
int head[N],num_edge,n,m,p,ans,x; void add(int u,int v)
{
edge[++num_edge].next=head[u];
edge[num_edge].to=v;
head[u]=num_edge;
} void Build(int x)
{
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].to!=Father[x])
{
Father[edge[i].to]=x;
Son[x]++;
Build(edge[i].to);
}
Cost[x]=Son[x]+a[x];
} void Dfs(int x)
{
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].to!=Father[x])
Dfs(edge[i].to);
int cnt=;
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].to!=Father[x])
b[++cnt]=Cost[edge[i].to]-;
sort(b+,b+cnt+);
for (int i=;i<=cnt;++i)
if (Cost[x]+b[i]<=m)
Cost[x]+=b[i],ans++;
} int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;++i)
scanf("%d",&a[i]);
for (int i=;i<=n;++i)
{
scanf("%d",&p);
for (int j=;j<=p;++j)
{
scanf("%d",&x); x++;
add(x,i); add(i,x);
}
}
Build();
Dfs();
printf("%d",ans);
}

4027. [HEOI2015]兔子与樱花【树形DP】的更多相关文章

  1. BZOJ 4027: [HEOI2015]兔子与樱花 树上dp

    4027: [HEOI2015]兔子与樱花 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  2. [BZOJ4027][HEOI2015]兔子与樱花 树形dp

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  3. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  4. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  5. 【BZOJ 4027】 4027: [HEOI2015]兔子与樱花 (贪心)

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  6. BZOJ 4027: [HEOI2015]兔子与樱花 贪心

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  7. BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心

    问题描述 LG4107 题解 首先,我们可以直接令结点 \(x\) 的权值为 \(c[x]+son_x\) ,发现将 \(x,y\) 合并,相当于增加 \(c[x]+c[y]-1\) 的重量. 容易想 ...

  8. BZOJ 4027: [HEOI2015]兔子与樱花

    贪心 #include<cstdio> #include<algorithm> using namespace std; int cnt,n,m,F[2000005],c[20 ...

  9. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

随机推荐

  1. 第一次搭建dns服务器

    CentOS 7 搭建DNS服务器 主要参考的是小左先森的一篇博客:https://blog.51cto.com/13525470/2054121. 1.搭建过程中遇到的几个问题说一下: a.在重启服 ...

  2. 写一个有字符界面的ssh链接工具

    大概的样子 这是大致的样子- 写之前想说的 因为个人工作的的电脑是deepin系统的,系统本身的命令行非常好用,用第三方的ssh工具用不习惯,就想自己写一个. shell脚本是第一次写,写的不是很好, ...

  3. DOS窗口带jar包运行java程序

    由于工作环境的问题,有过一次这样的测试,需要在DOS窗口运行带有jar包的java程序 编译命令如下: javac -Djava.ext.dirs=./lib Test.java 或 javac -D ...

  4. fuz 2159 WuYou

    Problem 2159 WuYou Accept: 16    Submit: 64Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...

  5. elasticsearch安装指导(new)

    1 直接去官网下载rpm包安装或者下载tar包 2 服务启动后,发现打不开页面,修改yml文件即可 用rpm包安装的软件有一个特点就是不同的目录在不同文件夹,比如config文件夹根据下面进程信息查到 ...

  6. 重温jQuery

    Write Less, Do More! ——John Resig(jQuery设计者) 目录 基础知识 概况 编程访问DOM节点 基础知识 Web网页是有结构的HTML文档.浏览器分析HTML文档, ...

  7. requireJS中如何用r.js对js进行合并和压缩css文件

    我运行的环境是windows+node.js,首先是用npm安装requirejs(全局安装,即使用 'npm install requirejs -g',这样方便在各个目录调用),接着就是下载r.j ...

  8. js-权威指南学习笔记15

    第十五章 脚本化文档 1.文档对象模型DOM是表示和操作HTML和XML文档内容的基础API. 2.Document.Element.Text是Node的子类. 3.查询文档的一个或多个元素有如下方法 ...

  9. jQuery基础(常用插件 表单验证,图片放大镜,自定义对象级,jQuery UI,面板折叠)

    1.表单验证插件——validate   该插件自带包含必填.数字.URL在内容的验证规则,即时显示异常信息,此外,还允许自定义验证规则,插件调用方法如下:   $(form).validate({o ...

  10. js移动终端浏览器版本

    //当要在不同移动终端浏览器中运行不同的代码时,需要对各个终端浏览器进行判断 //判断浏览器 var browser = { versions: function () { var u = navig ...