D - ~K Perm Counting

链接

题意:

  求有多少排列对于每个位置i都满足$|ai−i|!=k$。n<=2000

分析:

  容斥+dp。

  $answer = \sum\limits_{i = 0}^{n}(-1)^ig[i] \times (n - i)!$

  $g[i]$表示至少存在I个位置满足$a[i] - i = k$个数。

  考虑如何求出$g[]$。 如果建立两列点,一个表示数字,一个表示下标,左边第i个点与右边第i-k和i+k个点连边,那么这是一张二分图,g[i]就是求满足有刚好i个匹配的方案数。

  发现这样图可以按照模k的余数分成2k条链,每条链互不影响,链内满足不能有相邻的一起选。于是可以$f[i][j][0]$表示到链上的第i个位置,当前有j个匹配,第i个选不选的方案数。

  考虑如何将2k条链合并:因为链与链之间是互不影响的,所以可以建立一个点,连接两条链,然后让这个点一定不选即可。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = ;
int f[N][N][], g[N], A[N], fac[N]; inline void add(int &x,int y) { x += y; if (x >= mod) x -= y; } int main() {
int n = read(), k = read(), Ans = ;
int cnt = ;
for (int i = ; i <= k; ++i) {
for (int j = i; j <= n; j += k) A[++cnt] = (i == j);
for (int j = i; j <= n; j += k) A[++cnt] = (i == j);
}
f[][][] = ;
for (int i = ; i <= (n << ); ++i)
for (int j = ; j <= i; ++j) {
add(f[i][j][], (f[i - ][j][] + f[i - ][j][]) % mod);
if (!A[i] && j) add(f[i][j][], f[i - ][j - ][]);
}
fac[] = ;
for (int i = ; i <= n; ++i) fac[i] = 1ll * fac[i - ] * i % mod;
for (int i = ; i <= n; ++i) {
int res = (f[n << ][i][] + f[n << ][i][]) % mod;
Ans += 1ll * (i & ? - : ) * res * fac[n - i] % mod;
Ans = (Ans % mod + mod) % mod;
}
cout << Ans;
return ;
}

AGC 005 D - ~K Perm Counting的更多相关文章

  1. [Agc005D]K Perm Counting

    [Agc005D] K Perm Counting Description 糟糕爷特别喜爱排列.他正在构造一个长度为N的排列.但是他特别讨厌正整数K.因此他认为一个排列很糟糕,当且仅当存在至少一个i( ...

  2. AGC 005D.~K Perm Counting(容斥 DP 二分图)

    题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...

  3. 题解-Atcoder_agc005D ~K Perm Counting

    Problem AtCoder-agc005D 题意概要:给出\(n,k\),求合法的排列个数,其中合法定义为任何数字所在位置与自身值差的绝对值不为\(k\)(即求排列\(\{A_i\}\),使得\( ...

  4. [AGC005D] ~K Perm Counting [dp]

    题面 传送门 思路 首先可以明确的一点是,本题中出现不满足条件的所有的数,都是分组的 只有模$K$意义下相同的数之间才会出现不满足条件的情况,而且仅出现在相邻的情况 那么我们考虑把这个性质利用起来 我 ...

  5. [AT2062] ~K Perm Counting

    AT2602 , Luogu 求对于 \(n\) 个数的排列 , 有多少种方案满足对于所有的 \(i\) , \(|P_i - i| != K\) , 答案对 \(924844033\) 取模 . \ ...

  6. 【agc005d】~K Perm Counting

    题目大意 求有多少中1~n的排列,使得\(abs(第i个位置的值-i)!=k\) 解题思路 考虑容斥,\(ans=\sum_{i=0}^{n}(-1)^ig[i](n-i)!(g[i]表示至少有i个位 ...

  7. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  8. 做题记录 To 2019.2.13

    2019-01-18 4543: [POI2014]Hotel加强版:长链剖分+树形dp. 3653: 谈笑风生:dfs序+主席树. POJ 3678 Katu Puzzle:2-sat问题,给n个变 ...

  9. RE:从零开始的AGC被虐(到)生活(不能自理)

    RE:从零开始的AGC被虐(到)生活(不能自理) 「一直注视着你,似近似远,总是触碰不到.」 --来自风平浪静的明天 AtCoder Grand Contest 001 B: Mysterious L ...

随机推荐

  1. [book] iOS 8 Swift Programming Cookbook

    iOS 8 Swift Programming Cookbook 资源地址 http://pan.baidu.com/s/1c0hn1Gc 书籍介绍 源码截图 书籍截图

  2. Linux ip命令详解

    ip命令式用来配置网卡ip信息的命令,且是未来的趋势,重启网卡后IP失效 ip常见命令参数 Usage: ip [ OPTIONS ] OBJECT { COMMAND | help } ip [ - ...

  3. Linux配置自动发送邮件

    需要的工具:sendEmail 和 linux自带的定时工具:crontab 1.sendEmail的使用: 具体参数解释: -f zhangshibo706@163.com 发件人邮箱 -t 453 ...

  4. php算法基础----时间复杂度和空间复杂度

    算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...

  5. php实现动态随机验证码机制(CAPTCHA)

    php实现动态随机验证码机制 验证码(CAPTCHA)是“Completely Automated Public Turing test to tell Computers and Humans Ap ...

  6. 3种web会话管理方式

    一.基于server端的session管理 在早期web应用中,通常使用服务端session来管理用户的会话.快速了解服务端session: 1) 服务端session是用户第一次访问应用时,服务器就 ...

  7. 1054. [HAOI2008]移动玩具【BFS】

    Description 在一个4*4的方框内摆放了若干个相同的玩具,某人想将这些玩具重新摆放成为他心中理想的状态,规定移动 时只能将玩具向上下左右四个方向移动,并且移动的位置不能有玩具,请你用最少的移 ...

  8. 【洛谷】【堆+模拟】P2278 操作系统

    from HNOI2003 [题目描述:] 写一个程序来模拟操作系统的进程调度.假设该系统只有一个CPU,每一个进程的到达时间,执行时间和运行优先级都是已知的.其中运行优先级用自然数表示,数字越大,则 ...

  9. Hadoop学习之路(十)HDFS API的使用

    HDFS API的高级编程 HDFS的API就两个:FileSystem 和Configuration 1.文件的上传和下载 package com.ghgj.hdfs.api; import org ...

  10. ajax调用webservice 跨域问题

    用js或者jquery跨域调用接口时 对方的接口需要做jsonp处理,你的ajax jsonp调用才可以 egg 接口中已经做了jsonp处理,所以可以跨域调用 //$.ajax({ // url: ...