题目链接

给出 \(n\) 个布丁,每个补丁都有其颜色。现在有 \(m\) 次操作,每次操作将第 \(x_i\) 种颜色全部变为第 \(y_i\) 种颜色。

操作中可能会插入询问,回答目前总共有多少段颜色。

$1 \leq n,m \leq 10^5 $

 

考虑稍微暴力点的做法,每次暴力修改颜色,然后如果对于当前的颜色,找到他们所有的位置,假设其中一个为 \(p\) ,那么通过判断 \(p-1,p+1\)位置的颜色是否为 \(y_i\) 即可。

如果这样做,就需要链表来寻找位置。但是这样还是要超时,复杂度可能为 \(O(n^2)\)。

在这里,可以使用启发式合并,即是每次把小范围并到大范围上去,由于小范围中的数每被并一次,范围中的数至少增大一倍,也就是说每个数最后被并 \(\log(n)\) 次,总的复杂度为 \(O(nlogn)\) 的。

但目前考虑到这里还不足以解决问题,因为题目给出的 “\(x_i,y_i\)”不一定满足 \(x_i<y_i\)。

这里的解决方法就是还是将小范围并到大范围,这里中间的判断操作是不影响的,唯一有变化的就是最终的颜色,我们用一个数组来记录一下最终的颜色就可以了。\(f[i]=j\) 的含义就为 \(i\) 颜色目前为颜色为 \(j\) 的链,然后每次找 \(f[i]\) 即可。数组可以解决很多事情~

具体见代码吧:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;
int n, m, ans;
int col[N], first[N], nxt[N], head[N], sz[N], f[N];
int now_c[N] ;
void merge(int x, int y) {
for(int i = head[x]; i; i = nxt[i])
ans -= (col[i - 1] == y) + (col[i + 1] == y);
for(int i = head[x]; i; i = nxt[i]) col[i] = y;
nxt[first[x]] = head[y];
head[y] = head[x];
sz[y] += sz[x]; sz[x] = 0; head[x] = 0;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0) ;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
cin >> col[i] ;
f[col[i]] = col[i] ;
if(col[i] != col[i - 1]) ans++ ;
if(!head[col[i]]) first[col[i]] = i;
++sz[col[i]]; nxt[i] = head[col[i]]; head[col[i]] = i ;
}
for(int i = 1; i <= m; i++) {
int op, x, y;
cin >> op;
if(op == 2) cout << ans << '\n';
else {
cin >> x >> y ;
if(sz[f[x]] > sz[f[y]]) swap(f[x], f[y]) ;
if(sz[f[x]] == 0) continue ;
merge(f[x], f[y]) ;
}
}
return 0;
}

洛谷P3201 [HNOI2009]梦幻布丁(链表 + 启发式合并)的更多相关文章

  1. 洛谷P3201 [HNOI2009]梦幻布丁 [链表,启发式合并]

    题目传送门 梦幻布丁 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输 ...

  2. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  3. 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并

    [BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

  4. BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]

    1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...

  5. 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)

    题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...

  6. bzoj 1483: [HNOI2009]梦幻布丁 (链表启发式合并)

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input ...

  7. 洛谷P3201 [HNOI2009]梦幻布丁

    题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输出格式 输入格式: 第 ...

  8. bzoj1483: [HNOI2009]梦幻布丁(链表+启发式合并)

    题目大意:一个序列,两种操作. ①把其中的一种数修改成另一种数 ②询问有多少段不同的数如1 2 2 1为3段(1 / 2 2 / 1). 昨晚的BC的C题和这题很类似,于是现学现写居然过了十分开心. ...

  9. 洛谷 3201 [HNOI2009]梦幻布丁 解题报告

    3201 [HNOI2009]梦幻布丁 题目描述 \(N\)个布丁摆成一行,进行\(M\)次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为\(1,2,2 ...

随机推荐

  1. WPF 自定义 MessageBox (相对完善版 v1.0.0.6)

    基于WPF的自定义 MessageBox. 众所周知WPF界面美观.大多数WPF元素都可以简单的修改其样式,从而达到程序的风格统一.可是当你不得不弹出一个消息框通知用户消息时(虽然很不建议在程序中频繁 ...

  2. springboot通过http访问——修改访问的端口号

    文章转载来于:https://blog.csdn.net/zknxx/article/details/53433592 有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的 ...

  3. Teamwork(The second day of the team)

    梦之翼 5.20工作汇报: Master:杨灵超 产品负责人:杨家安 第一次Sprint的目标和时间: 目标:这一次的sprint我们想先做成一个可以运行的可以展示,但是功能或许还不是很完善的一个模型 ...

  4. DPDK helloworld 源码阅读

    在 DPDK Programmer's Guides 中的 EAL 一篇中有一个图可以很清晰地看到一个DPDK的应用程序的大致执行思路: 初始化检查CPU支持.微架构配置等完成后,执行main()函数 ...

  5. APP案例分析——Steam

    本次作业的分析对象是Steam,一款全球最大最广泛的游戏平台.之所以选择Steam是因为我已经在这上面挥洒了大量的青春,对它也有了很深的感情. 调研.评测 个人第一次上手体验 打开首页就可以看到琳琅满 ...

  6. 数据结构复习笔记(ADT栈/LIFO表)

    栈是一种特殊的表,只在表首进行插入和删除操作,表首称之为栈顶,表尾称为栈底:栈的核心原则是先进后出,简称Last In First Out(LIFO表):常用的运算有:1.是否为空栈判断:2.栈是否满 ...

  7. LeetCode题解:(19) Remove Nth Node From End of List

    题目说明 Given a linked list, remove the nth node from the end of list and return its head. For example, ...

  8. 获取ios设备的udid

    今天get的第二个技能~~~ UDID指的是设备的唯一设备识别符,ipa包未上架之前如果不添加udid是无法安装成功的.那么如何快速获取ios设备的udid呢? 今天get的方法是用蒲公英,网址:ht ...

  9. cxDBTreelist一些使用方法

    一.导出EXCEL   TXT   HTML: uses cxTLExportLink; cxExportTLToEXCEL(dm.SaveDialog.FileName,cxDBTreeList1, ...

  10. scrapy学习笔记(三):使用item与pipeline保存数据

    scrapy下使用item才是正经方法.在item中定义需要保存的内容,然后在pipeline处理item,爬虫流程就成了这样: 抓取 --> 按item规则收集需要数据 -->使用pip ...