BZOJ 3771 母函数裸题
题目描述
输入格式
输出格式
样例输入
4
4
5
6
7
样例输出
4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.
提示
所有数据满足:Ai<=40000
题意: 从n个物品中选取1个或 2个 或 3个 的价值和是多少 对于一个价值 输出方案数 (方案无顺序要求)
简单讲一下母函数 例如有3个物品 他们的价值是1,2,3
构造一个母函数 f(x) = x^1 + x^2 + x^3 (表示取一件)
下面我来解释一下这个f(x) 指数为物品的价值 每一项前面的系数表示方案数
x^1 表示取一件物品取到价值为 1 的方案数为 1
x^2 表示取一件物品取到价值为 2 的方案数为 1 以此类推
g(x)= x^2 + x^4 + x^6 (表示同一件物品取两次)
z(x)= x^3 + x^6 + x^9 (表示同一件物品取三次)
那么取两次而且方案数不重复的结果是 ( f ( x ) * f ( x ) - g ( x ) ) / 2 (f ( x ) * f ( x ) 会多算了一次取两个相同的方案 所以要减去 )
取三次的方案就是 ( f ( x ) * f ( x ) * f(x)-3 * f ( x ) * g(x) +2 * z(x) )/6
(无顺序要求所以要除以一个3的全排列 f (x) * g (x) / 2 多算了的取了两个相同的方案数 因为下面有一个6的分母 所以乘以了一个系数 3
但是这里面还包括了选取了3个都相同的方案 所以要加上 2*z(x))
这里面的多项式的计算就直接通过FFT优化就好了 (FFT板子当作黑盒直接使用就行了)
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)+
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("data.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#define rep(i,a,b) for(int i=a;i<b;++i)
#define per(i,a,b) for(int i=a-1;i>=b;--i)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 3e5 + ;
const int maxm = maxn * ;
int n, m, a[maxn], b[maxn];
int len, res[maxm], mx; //开大4倍
struct cpx {
double r, i;
cpx ( double r = , double i = ) : r ( r ), i ( i ) {};
cpx operator+ ( const cpx &b ) {
return cpx ( r + b.r, i + b.i );
}
cpx operator- ( const cpx &b ) {
return cpx ( r - b.r, i - b.i );
}
cpx operator* ( const cpx &b ) {
return cpx ( r * b.r - i * b.i, i * b.r + r * b.i );
}
} va[maxm], vb[maxm];
void rader ( cpx F[], int len ) { //len = 2^M,reverse F[i] with F[j] j为i二进制反转
int j = len >> ;
for ( int i = ; i < len - ; ++i ) {
if ( i < j ) swap ( F[i], F[j] ); // reverse
int k = len >> ;
while ( j >= k ) j -= k, k >>= ;
if ( j < k ) j += k;
}
}
void FFT ( cpx F[], int len, int t ) {
rader ( F, len );
for ( int h = ; h <= len; h <<= ) {
cpx wn ( cos ( -t * * pi / h ), sin ( -t * * pi / h ) );
for ( int j = ; j < len; j += h ) {
cpx E ( , ); //旋转因子
for ( int k = j; k < j + h / ; ++k ) {
cpx u = F[k];
cpx v = E * F[k + h / ];
F[k] = u + v;
F[k + h / ] = u - v;
E = E * wn;
}
}
}
if ( t == - ) //IDFT
for ( int i = ; i < len; ++i ) F[i].r /= len;
}
void Conv ( cpx a[], cpx b[], int len ) { //求卷积
FFT ( a, len, );
FFT ( b, len, );
for ( int i = ; i < len; ++i ) a[i] = a[i] * b[i];
FFT ( a, len, - );
}
void gao () {
len = ;
mx = n + m;
while ( len <= mx ) len <<= ; //mx为卷积后最大下标
for ( int i = ; i < len; i++ ) va[i].r = va[i].i = vb[i].r = vb[i].i = ;
for ( int i = ; i < n; i++ ) va[i].r = a[i]; //根据题目要求改写
for ( int i = ; i < m; i++ ) vb[i].r = b[i]; //根据题目要求改写
Conv ( va, vb, len );
for ( int i = ; i < len; ++i ) res[i] += va[i].r + 0.5;
}
int B[maxn], C[maxn], ans[maxm], cnt1[maxm], cnt2[maxm];
int main() {
FIN;
sf ( n );
int maxxA = -;
for ( int i = , x; i < n ; i++ ) {
sf ( x );
a[x]++, b[x]++, ans[x]++;
maxxA = max ( maxxA, x );
B[ * x]++, C[ * x]++;
}
n = m = ++maxxA;
gao();
for ( int i = ; i <= * maxxA ; i++ ) ans[i] += ( res[i] - B[i] ) / , b[i] = res[i], res[i] = ;
m = * maxxA;
gao();
for ( int i = ; i <= * maxxA ; i++ ) cnt1[i] = res[i], res[i] = ;
for ( int i = ; i <= * maxxA ; i++ ) b[i] = B[i];
gao();
for ( int i = ; i <= * maxxA ; i++ ) cnt2[i] = res[i];
for ( int i = ; i <= * maxxA ; i++ ) ans[i] += ( cnt1[i] - * cnt2[i] + * C[i] ) / ;
for ( int i = ; i <= * maxxA ; i++ ) if ( ans[i] ) printf ( "%d %d\n", i, ans[i] );
return ;
}
BZOJ 3771 母函数裸题的更多相关文章
- BZOJ 2427 & 分块裸题
题意: 求区间内的众数,强制在线. SOL: 推荐一个大神犇的blog,讲的还是很好的(主要我喜欢他的代码风格(逃:http://www.cnblogs.com/JoeFan/p/4248767.ht ...
- BZOJ 3680: 吊打XXX【模拟退火算法裸题学习,爬山算法学习】
3680: 吊打XXX Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 3192 Solved: 1198[Sub ...
- BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2877[Submit][Stat ...
- 刷题向》POJ2823 单调队列裸题(<不会做,请自裁>系列)
最近BZOJ炸了,而我的博客上又更新了一些基本知识,所以这里刷一些裸题,用以丰富知识性博客 POJ2823 滑动的窗口 这是一道经典的单调队题,我记得我刚学的时候就是用这道题作为单调队列的例题,算 ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- 【填坑】bzoj3224 splay裸题
人生第一道splay不出所料是一道裸题,一道水题,一道2k代码都不到的题 #include <cstdio> ,n,p,q; ],c[][],size[],sp[]; void rot(i ...
- tarjan讲解(用codevs1332(tarjan的裸题)讲解)
主要借助这道比较裸的题来讲一下tarjan这种算法 tarjan是一种求解有向图强连通分量的线性时间的算法.(用dfs来实现) 如果两个顶点可以相互通达,则称两个顶点强连通.如果有向图G的每两个顶点都 ...
- LCT裸题泛做
①洞穴勘测 bzoj2049 题意:由若干个操作,每次加入/删除两点间的一条边,询问某两点是否连通.保证任意时刻图都是一个森林.(两点之间至多只有一条路径) 这就是个link+cut+find roo ...
- 贴一下WC总结里提到的那道裸题吧。。。
[bzoj4034][HAOI2015]T2 试题描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 ...
随机推荐
- 一次ajax调用,发送了两次请求(一次为请求方法为option,一次为正常请求)
在项目了开发时遇见一个奇怪的现象,就是我在js里面发送一次ajax请求,在浏览器network那边查询到的却是发送了两次请求,第一次的Request Method参数为OPTIONS,第二次的Requ ...
- 第二阶段Sprint冲刺会议7
进展:试着把视频录制功能加到时间提醒中,但是整合没有成功,今天没有进展.
- Chapter 5 软件工程中的形式化方法
从广义上讲,形式化方法是指将离散数学的方法用于解决软件工程领域的问题,主要包括建立精确的数学模型以及对模型的分析活动.狭义的讲,形式化方法是运用形式化语言,进行形式化的规格描述.模型推理和验证的方法. ...
- imooc-c++学习感悟
imooc--慕课网c++课程链接:[课程链接](http://www.imooc.com/course/list?c=C+puls+puls) Imooc 慕课网c++学习感悟 1.课程名称:c++ ...
- spring时间管理
spring时间管理相比Quartz要简单的多,但功能不如quartz强大 spring.xml的配置 <?xml version="1.0" encoding=" ...
- 初期测评 E 迷障
https://vjudge.net/contest/240302#problem/E 通过悬崖的yifenfei,又面临着幽谷的考验—— 幽谷周围瘴气弥漫,静的可怕,隐约可见地上堆满了骷髅.由于此处 ...
- yii框架 excel导出
环境: yii框架 basic版 1.下载 PHPexcel (我用的是PHPExcel-1.8.1) 2.将下载的文件夹 (PHPExcel-1.8.1)放至 vender下 (路径:basic ...
- 2018 桂林ccpc现场赛 总结
Day 0 5个小时的火车,坐的昏昏欲睡.桂林站出来没有地铁,而是出租车排成长队依次上车,也算是某种意义上的地铁吧.到了酒店才发现学校那边又给我们换了,又拖着行李找新的酒店,途中路过一家餐馆,所有人都 ...
- JVM学习笔记(二):垃圾收集
程序计数器. 虚拟机栈. 本地方法栈3个区域随线程而生,随线程而灭:栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作. 每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这 ...
- ansible操作(一)
ansible晋级操作之ad-hoc命令 所谓的ad-hoc命令! 如果我们敲入一些命令去比较快的完成一些事情,而不需要将这些执行的命令特别保存下来, 这样的命令就叫做 ad-hoc 命令.Ansib ...