BSGS算法总结

\(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题:

求\(y^x\equiv z\ (mod\ p)\)的最小正整数解。

前提条件是\((y,p)=1\)。

我们选定一个大步长\(m=\sqrt p + 1\),设\(x=am+b\),那么显然有\(a,b\in[0,m)\)。这样就有\(y^{am+b}\equiv z\ (mod\ p)\),就有\((y^m)^a=z*y^{-b}\ (mod\ p)\)。

但是这个逆元看起来很不爽,所以我们重新设\(x=am-b\),那么就有\((y^m)^a\equiv z*y^b\ (mod\ p)\)。这时候是\(a\in[1,m],b\in[0.m)\)。

具体实现方法:

分别计算出\(z*y^0,z*y^1...z*y^{m-1}\)。把算出来的这些东西放到一个表里面,这里用\(map\)和\(hash\)都是可以的。(显然\(hash\)跑得比\(map\)快到不知道哪里去了)

然后对于\(i\in[1,m]\)计算\((y^m)^i\),查一下表看这个数是不是已经被算出来了。

能算出来就能直接输出解了。

[SDOI2011]计算器

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
map<int,int>M;
int fastpow(int a,int b,int mod)
{
int res=1;
while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
int main()
{
int T=gi(),K=gi();
while (T--)
{
int y=gi(),z=gi(),p=gi();
if (K==1) printf("%d\n",fastpow(y,z,p));
if (K==2)
{
if (y%p==0&&z%p) puts("Orz, I cannot find x!");
else printf("%lld\n",1ll*fastpow(y,p-2,p)*z%p);
}
if (K==3)
{
if (y%p==0) {puts("Orz, I cannot find x!");continue;}
y%=p;z%=p;
int m=sqrt(p)+1,fg=0;M.clear();
for (int i=0,t=z;i<=m;++i,t=1ll*t*y%p) M[t]=i;
for (int i=1,tt=fastpow(y,m,p),t=tt;i<=m;++i,t=1ll*t*tt%p)
if (M.count(t)) {printf("%d\n",i*m-M[t]);fg=1;break;}
if (!fg) puts("Orz, I cannot find x!");
}
}
return 0;
}

扩展BSGS

如果\((y,p)\neq 1?\)

考虑\(y*y^{x-1}+k*p=z\)(注意这里是等号不是同余)

根据扩展欧几里得的那套理论,当\(z\)不是\((y,p)\)的因数的时候就会无解。

否则设\(d=(y,p)\),那么就会有\(\frac yd y^{x-1}+k*\frac pd=\frac zd\)。

不断递归下去,直至\(d=1\)。接下来就可以套用普通的\(BSGS\)了。

Spoj3105 Mod

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int y,z,p,ans;map<int,int>M;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int fastpow(int a,int b,int mod)
{
int res=1;
while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
int EX_BSGS()
{
int cnt=0,sum=1;
for (int d=gcd(y,p);d!=1;d=gcd(y,p))
{
if (z%d) return -1;
++cnt,z/=d,p/=d,sum=1ll*sum*y/d%p;
if (z==sum) return cnt;
}
int m=sqrt(p)+1;M.clear();
for (int i=0,t=z;i<=m;++i,t=1ll*t*y%p) M[t]=i;
for (int i=1,tt=fastpow(y,m,p),t=1ll*sum*tt%p;i<=m;++i,t=1ll*t*tt%p)
if (M.count(t)) return i*m+cnt-M[t];
return -1;
}
int main()
{
while (233)
{
y=gi();p=gi();z=gi();
if (y+z+p==0) break;
y%=p;z%=p;ans=EX_BSGS();
if (ans==-1) puts("No Solution");
else printf("%d\n",ans);
}
return 0;
}

BSGS算法总结的更多相关文章

  1. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  2. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  3. [BSGS算法]纯水斐波那契数列

    学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只 ...

  4. BSGS算法

    BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做 ...

  5. BSGS算法及扩展

    BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...

  6. uva11916 bsgs算法逆元模板,求逆元,组合计数

    其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方 ...

  7. BSGS算法及其扩展

    bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...

  8. BSGS算法学习笔记

    从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...

  9. bsgs算法详解

    例题  poj 2417bsgs  http://poj.org/problem?id=2417 这是一道bsgs题目,用bsgs算法,又称大小步(baby step giant step)算法,或者 ...

随机推荐

  1. 初始docker

    什么是docker? 很多人都是使用docker但是对docker的理解其实并没有这么透彻,只知道怎么用但是不知道为什么用 什么时候去用. 一.环境配置的难题 软件开发最大的麻烦事之一,就是环境配置. ...

  2. [翻译] SCRecorder

    SCRecorder https://github.com/rFlex/SCRecorder An easy Vine/Instagram like video and/or audio record ...

  3. [C++] 用Xcode来写C++程序[2] 操作变量

    用Xcode来写C++程序[2] 操作变量 此节讲解包括变量的初始化的几种方式,以及泛型编程的两种变量赋值方式. 最基本的变量赋值以及操作: // operating with variables # ...

  4. 解决 锁定文件失败 打不开磁盘“D:\ubuntu\Ubuntu 64 位.vmdk”或它所依赖的某个快照磁盘。 模块 Disk”启动失败

    一次在使用虚拟机的过程中,电脑出问题强制关机后,重新打开虚拟机,出现了“文件锁定失败”,打不开虚拟机的情况. 上网百度查相关的解决方案,终于解决了问题.因为虚拟机运行的时候会创建相应的文件,即在虚拟机 ...

  5. redis几种数据类型以及使用场景

    1. string类型 string为最简单类型,一个key对应一个value set mykey "wangzai" ##设置key,第二次赋值会直接覆盖之前的 setnx my ...

  6. 铁乐学python_Day38_多进程和multiprocess模块1

    铁乐学python_Day38_多进程和multiprocess模块1 [进程] 运行中的程序就是一个进程. 所有的进程都是通过它的父进程来创建的. 因此,运行起来的python程序也是一个进程,那么 ...

  7. 封装简单的mvc框架

    MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式. MVC把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Controller). PH ...

  8. 手写HASHMAP

    手写HASHMAP const int MAXN=10010; const int HASH=10100;            //需要hash的数的总个数最大值 struct HASHMAP { ...

  9. mvc, web mvc, spring web mvc 区别

    1. MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用于组织代码用一种业务逻辑和数据显示分离的 ...

  10. 基于easyui开发Web版Activiti流程定制器详解(五)——Draw2d详解(一)

    背景: 小弟工作已有十年有余,期间接触了不少工作流产品,个人比较喜欢的还是JBPM,因为出自名门Jboss所以备受推崇,但是现在JBPM版本已经与自己当年使用的版本(3.X)大相径庭,想升级也不太容易 ...