ROS + Caffe,这里以环境中物体识别为示例,机器人怎么知道环境里面有什么呢?

[0.0567392 - n03376595 folding chair]
[0.0566773 - n04099969 rocking chair, rocker]

[0.236507 - n04239074 sliding door]

[0.477623 - n03832673 notebook, notebook computer]

[0.233582 - n03180011 desktop computer]

caffe在ros中主题以概率方式推断物品,比如椅子,门和笔记本电脑。

如何实现?

首先,需要安装Berkeley Vision and Learning Center (BVLC) 的Caffe,在ubuntu 14.04 16.04上网上教程很多,

这里就不多说,只列出核心步骤:

最重要的就是看官网说明!!!----http://caffe.berkeleyvision.org/

$ sudo apt-get install libatlas-dev libatlas-base-dev

$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

$ sudo apt-get install --no-install-recommends libboost-all-dev

$ sudo apt-get install libboost-all-dev

$ sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

在github下载最新版caffe:https://github.com/BVLC/caffe

注意库要配置好!可以支持opencv2和opencv3,但是如果配置不正确,呵呵,想象一下,编译和运行错乱是什么结果呢?

简单回答:Segmentation fault (core dump) !用opencv3编译,运行用opencv2,必然挂掉。CUDA ATLAS OpenCV等。

编译比较简单,测试也一般不会出问题。

cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)
make all
make test
make runtest

注意,如果只使用CPU,需要修改Makefile.config如下:

cd [CATKIN_WS]/src/ros_caffe/caffe
cp Makefile.config.example Makefile.config
$ vi Makefile.config
For CPU-only Caffe, uncomment CPU_ONLY := 1 in Makefile.config.
$ make all ; make install

编译完成后,测试一下;-) make runtest

ros_caffe示例:https://github.com/tzutalin/ros_caffe

注意caffe库位置:修改Caffe's include and lib 路径 in CMakeLists.txt。

set(CAFFE_INCLUDEDIR caffe/include caffe/install/include)
set(CAFFE_LINK_LIBRARAY caffe/lib)

$ cd [CATKIN_WS]
$ catkin_make
$ source ./devel/setup.bash

出错依据报错信息查找问题。ok,编译工作全部完成。

下载模型之后,直接在分别在终端运行:

$ roscore

$ roslaunch turtlebot_bringup 3dsensor.launch

$ roslaunch astra_launch astra.launch

$ rosrun ros_caffe ros_caffe_test

如果出现:

  

ok,全部完成。可以使用并出现识别结果。

ROS Topics
Publish a topic after classifiction:
/caffe_ret
Receive an image :
/camera/rgb/image_raw

Classifier.h

#ifndef CLASSIFIER_H
#define CLASSIFIER_H

#include <iostream>
#include <vector>
#include <sstream>
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace caffe;
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
    public:
        Classifier(const string& model_file,
                   const string& trained_file,
                   const string& mean_file,
                   const string& label_file);

        std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

    private:
        void SetMean(const string& mean_file);

        std::vector<float> Predict(const cv::Mat& img);

        void WrapInputLayer(std::vector<cv::Mat>* input_channels);

        void Preprocess(const cv::Mat& img,
                        std::vector<cv::Mat>* input_channels);

    private:
        shared_ptr<Net<float> > net_;
        cv::Size input_geometry_;
        int num_channels_;
        cv::Mat mean_;
        std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
#ifdef CPU_ONLY
    Caffe::set_mode(Caffe::CPU);
#else
    Caffe::set_mode(Caffe::GPU);
#endif

    /* Load the network. */
    net_.reset(new Net<float>(model_file, TEST));
    net_->CopyTrainedLayersFrom(trained_file);

    Blob<float>* input_layer = net_->input_blobs()[0];
    num_channels_ = input_layer->channels();

    input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

    /* Load the binaryproto mean file. */
    SetMean(mean_file);

    /* Load labels. */
    std::ifstream labels(label_file.c_str());
    string line;
    while (std::getline(labels, line))
        labels_.push_back(string(line));

    Blob<float>* output_layer = net_->output_blobs()[0];
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
    return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    std::vector<std::pair<float, int> > pairs;
    for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], i));
    std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

    std::vector<int> result;
    for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
    return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    std::vector<float> output = Predict(img);

    std::vector<int> maxN = Argmax(output, N);
    std::vector<Prediction> predictions;
    for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    }

    return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

    /* Convert from BlobProto to Blob<float> */
    Blob<float> mean_blob;
    mean_blob.FromProto(blob_proto);

    /* The format of the mean file is planar 32-bit float BGR or grayscale. */
    std::vector<cv::Mat> channels;
    float* data = mean_blob.mutable_cpu_data();
    for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
    }

    /* Merge the separate channels into a single image. */
    cv::Mat mean;
    cv::merge(channels, mean);

    /* Compute the global mean pixel value and create a mean image
     * filled with this value. */
    cv::Scalar channel_mean = cv::mean(mean);
    mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
    Blob<float>* input_layer = net_->input_blobs()[0];
    input_layer->Reshape(1, num_channels_,
                         input_geometry_.height, input_geometry_.width);
    /* Forward dimension change to all layers. */
    net_->Reshape();

    std::vector<cv::Mat> input_channels;
    WrapInputLayer(&input_channels);

    Preprocess(img, &input_channels);

    net_->ForwardPrefilled();

    /* Copy the output layer to a std::vector */
    Blob<float>* output_layer = net_->output_blobs()[0];
    const float* begin = output_layer->cpu_data();
    const float* end = begin + output_layer->channels();
    return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    Blob<float>* input_layer = net_->input_blobs()[0];

    int width = input_layer->width();
    int height = input_layer->height();
    float* input_data = input_layer->mutable_cpu_data();
    for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
    }
}

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
    /* Convert the input image to the input image format of the network. */
    cv::Mat sample;
    if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGR2GRAY);
    else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGRA2GRAY);
    else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_BGRA2BGR);
    else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_GRAY2BGR);
    else
        sample = img;

    cv::Mat sample_resized;
    if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
    else
        sample_resized = sample;

    cv::Mat sample_float;
    if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
    else
        sample_resized.convertTo(sample_float, CV_32FC1);

    cv::Mat sample_normalized;
    cv::subtract(sample_float, mean_, sample_normalized);

    /* This operation will write the separate BGR planes directly to the
     * input layer of the network because it is wrapped by the cv::Mat
     * objects in input_channels. */
    cv::split(sample_normalized, *input_channels);
}

#endif

ros_caffe_test.cpp

#include <ros/ros.h>
#include <ros/package.h>
#include <std_msgs/String.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include "Classifier.h"

const std::string RECEIVE_IMG_TOPIC_NAME = "camera/rgb/image_raw";
const std::string PUBLISH_RET_TOPIC_NAME = "/caffe_ret";

Classifier* classifier;
std::string model_path;
std::string weights_path;
std::string mean_file;
std::string label_file;
std::string image_path;

ros::Publisher gPublisher;

void publishRet(const std::vector<Prediction>& predictions);

void imageCallback(const sensor_msgs::ImageConstPtr& msg) {
    try {
        cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, "bgr8");
        //cv::imwrite("rgb.png", cv_ptr->image);
		cv::Mat img = cv_ptr->image;
		std::vector<Prediction> predictions = classifier->Classify(img);
		publishRet(predictions);
    } catch (cv_bridge::Exception& e) {
        ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str());
    }
}

// TODO: Define a msg or create a service
// Try to receive : $rostopic echo /caffe_ret
void publishRet(const std::vector<Prediction>& predictions)  {
    std_msgs::String msg;
    std::stringstream ss;
    for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        ss << "[" << p.second << " - " << p.first << "]" << std::endl;
    }
    msg.data = ss.str();
    gPublisher.publish(msg);
}

int main(int argc, char **argv) {
    ros::init(argc, argv, "ros_caffe_test");
    ros::NodeHandle nh;
    image_transport::ImageTransport it(nh);
    // To receive an image from the topic, PUBLISH_RET_TOPIC_NAME
    image_transport::Subscriber sub = it.subscribe(RECEIVE_IMG_TOPIC_NAME, 1, imageCallback);
	gPublisher = nh.advertise<std_msgs::String>(PUBLISH_RET_TOPIC_NAME, 100);
    const std::string ROOT_SAMPLE = ros::package::getPath("ros_caffe");
    model_path = ROOT_SAMPLE + "/data/deploy.prototxt";
    weights_path = ROOT_SAMPLE + "/data/bvlc_reference_caffenet.caffemodel";
    mean_file = ROOT_SAMPLE + "/data/imagenet_mean.binaryproto";
    label_file = ROOT_SAMPLE + "/data/synset_words.txt";
    image_path = ROOT_SAMPLE + "/data/cat.jpg";

    classifier = new Classifier(model_path, weights_path, mean_file, label_file);

    // Test data/cat.jpg
    cv::Mat img = cv::imread(image_path, -1);
    std::vector<Prediction> predictions = classifier->Classify(img);
    /* Print the top N predictions. */
    std::cout << "Test default image under /data/cat.jpg" << std::endl;
    for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - \"" << p.first << "\"" << std::endl;
    }
	publishRet(predictions);

    ros::spin();
    delete classifier;
    ros::shutdown();
    return 0;
}

问题汇总:一般哪有那么顺利~~

I0122 16:50:22.870820 20921 upgrade_proto.cpp:44] Attempting to upgrade input file specified using deprecated transformation parameters: /home/exbot/Rob_Soft/caffe/src/ros_caffe-master/data/bvlc_reference_caffenet.caffemodel
I0122 16:50:22.870877 20921 upgrade_proto.cpp:47] Successfully upgraded file specified using deprecated data transformation parameters.
W0122 16:50:22.870887 20921 upgrade_proto.cpp:49] Note that future Caffe releases will only support transform_param messages for transformation fields.
I0122 16:50:22.870893 20921 upgrade_proto.cpp:53] Attempting to upgrade input file specified using deprecated V1LayerParameter: /home/exbot/Rob_Soft/caffe/src/ros_caffe-master/data/bvlc_reference_caffenet.caffemodel
I0122 16:50:23.219712 20921 upgrade_proto.cpp:61] Successfully upgraded file specified using deprecated V1LayerParameter
I0122 16:50:23.221462 20921 net.cpp:746] Ignoring source layer data
I0122 16:50:23.316156 20921 net.cpp:746] Ignoring source layer loss
Segmentation fault (core dumped)

如果出现,这是需要调试ROS节点,使用gdb:

$ ulimit -a

$ ulimit -c unlimited

$ echo 1 | sudo tee /proc/sys/kernel/core_uses_pid

如果查看出错信息:

$ gdb ros_caffe_test core.20921

GNU gdb (Ubuntu 7.7.1-0ubuntu5~14.04.2) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ros_caffe_test...(no debugging symbols found)...done.
[New LWP 20921]
[New LWP 20934]
[New LWP 20933]
[New LWP 20939]
[New LWP 20932]
[New LWP 20930]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Core was generated by `/home/exbot/Rob_Soft/caffe/devel/lib/ros_caffe/ros_caffe_test'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x00007fc51da27e0c in cv::merge(cv::_InputArray const&, cv::_OutputArray const&) ()
   from /usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4
(gdb)

基本推断,是opencv库乱了,调整环境变量指定。

ROS + Caffe 机器人操作系统框架和深度学习框架笔记 (機器人控制與人工智能)的更多相关文章

  1. 深度学习框架-caffe安装-环境[Mac OSX 10.12]

    深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...

  2. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  3. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

  4. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  5. Caffe 深度学习框架介绍

    转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是 ...

  6. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  7. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  8. ROS(indigo)机器人操作系统学习有趣丰富的Gazebo仿真示例evarobot

    一直在寻找一个示例可以将ROS学习中常用的基础内容大部分都包含进去,最好还包括Gazebo仿真, 这样即使没有硬件设备,也可以很好的学习ROS相关内容,但又必须有对应的硬件,便于后续研究. 这里,介绍 ...

  9. ROS(indigo)机器人操作系统学习资料和常用功能包汇总整理(ubuntu14.04LTS)

    ROS(indigo)机器人操作系统学习资料和常用功能包汇总整理(ubuntu14.04LTS) 1. 网站资源: ROSwiki官网:http://wiki.ros.org/cn GitHub    ...

随机推荐

  1. git<Commit和Push的区别>

    git作为支持分布式版本管理的工具,它管理的库(repository)分为本地库.远程库. git commit操作的是本地库,git push操作的是远程库. git commit是将本地修改过的文 ...

  2. centos systemctl daemon-reload 提示 no such file or directory 的一个原因

    service 的文件名写错了 比如 mongodb.service 写成了 mongodb.srvice 真的是坑,居然没有提示具体的路径,只是提示一个 no such file or direct ...

  3. git的一些常见问题

    from:http://hi.baidu.com/mvp_xuan/blog/item/2ba062d8cd2c9fc939012fae.html 关于linux上建库等操作请看文章: http:// ...

  4. SPSS数据类型:测量字段、角色字段

    一:测量字段 • 默认值.具有未知存储类型和值的数据(例如,由于其尚未被读取)将显示为<默认值>. •  连续.用于描述整数.实数或日期/时间等数字值,如范围 0 - 100 或 0.75 ...

  5. NATS_02:NATS消息通信模型

    消息通信模型 NATS的消息通信是这样的:应用程序的数据被编码为一条消息,并通过发布者发送出去:订阅者接收到消息,进行解码,再处理.订阅者处理NATS消息可以是同步的或异步的. * 异步处理  异步处 ...

  6. GO_08:GO语言基础之interface

    接口interface 1. 接口是一个或多个方法签名的集合 2. 只要某个类型拥有该接口的所有方法签名,即算实现该接口,无需显示声明实现了哪个接口,这称为 Structural typing 3. ...

  7. python---requests和beautifulsoup4模块的使用

    Requests:是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得 ...

  8. typedef 与 #define的区别

    typedef 与 #define的区别 整理于一篇经典blog,经典原文地址http://www.cnblogs.com/csyisong/archive/2009/01/09/1372363.ht ...

  9. 【leetcode 简单】 第五十五题 打家劫舍

    你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个代表每 ...

  10. 网络流建图(典型)(EK)

    题目链接:https://cn.vjudge.net/contest/68128#problem/B 具体思路: 按照  源点 - > 食物 - > 牛1 - > 牛2 - > ...