P1477 [NOI2008]假面舞会

题目描述

一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。

今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。

为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。

参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。

栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具的编号。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。

由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。

输入输出格式

输入格式:

第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具的编号。相同的数对a, b 在输入文件中可能出现多次。

输出格式:

包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。

输入输出样例

输入样例#1: 复制

6 5
1 2
2 3
3 4
4 1
3 5
输出样例#1: 复制

4 4
输入样例#2: 复制

3 3
1 2
2 1
2 3
输出样例#2: 复制

-1 -1

说明

50%的数据,满足n ≤ 300, m ≤ 1000;

100%的数据,满足n ≤ 100000, m ≤ 1000000。


Solution

有思维难度而没有算法难度的奇奇怪怪的图论题==

分情况讨论八。

如果只有环的情况,明显就是所有环的长度取gcd是种类的最大值。如果又有环又有链,链实际上没用,只用判环就好。如果只有链,那么把所有链拼到一起,总长度就是种类数的最大值,最小值就是3-ans能被ans整除的最小值。

关于环,如果建出来的正图没有环,但是变成无向图是有环,如何去判断?就建反边,正边权为1,反边权为-1,正常跑dfs判环就可以叻。

【注意】环长度每次是取绝对值!!!(有可能是负的减正的)

还有一个有趣的事实:任何数和0取gcd结果都是它本身!!

Code

#include<bits/stdc++.h>
using namespace std; int n, m; struct Node {
int v, nex, w;
Node(int v = , int nex = , int w = ) :
v(v), nex(nex), w(w) { }
} Edge[]; int h[], stot;
void add(int u, int v, int d) {
Edge[++stot] = Node(v, h[u], d);
h[u] = stot;
} int gcd(int a, int b) {
return b == ? a : gcd(b, a % b);
} int vis[], dep[], ans, len, lenmi, lenma;
void dfs(int u, int deep) {
if(!vis[u]) {
vis[u] = ;
dep[u] = deep;
lenmi = min(lenmi, deep);
lenma = max(lenma, deep);
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
dfs(v, deep + Edge[i].w);
}
} else ans = gcd(ans, abs(deep - dep[u]));
} int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v, ); add(v, u, -);
}
for(int i = ; i <= n; i ++)
if(!vis[i]) {
dfs(i, );
len += lenma - lenmi + ;
lenmi = lenma = ;
}
if(ans >= ) {
for(int i = ; i <= ans; i ++)
if(ans % i == ) {
printf("%d %d", ans, i);
break;
}
} else if(ans == && len >= ) printf("%d 3", len);
else printf("-1 -1");
return ;
}

【洛谷】1477:[NOI2008]假面舞会【图论】的更多相关文章

  1. 洛谷 P1477 [NOI2008]假面舞会

    题目链接 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办方 ...

  2. BZOJ1064 NOI2008 假面舞会 图论

    传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...

  3. 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链

    luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...

  4. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  5. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  6. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

  7. 【BZOJ1064】[Noi2008]假面舞会 DFS树

    [BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...

  8. 【图论 搜索】bzoj1064: [Noi2008]假面舞会

    做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...

  9. 洛谷 1262 间谍网络 Tarjan 图论

    洛谷 1262 图论 tarjan 并不感觉把这道题目放在图的遍历中很合适,虽然思路比较简单但是代码还是有点多的,, 将可收买的间谍的cost值设为它的价格,不可购买的设为inf,按照控制关系连图,T ...

随机推荐

  1. 使用spring的aop监听所有controller或者action日志

    日志还是使用log4,直接配置好文件输出或者控制台打印! 注解或者cml都行,我这里采用xml方式: spring的配置文件中配置日志类和aop: <!-- 日志监控类 --> <b ...

  2. 2017-2018-2 20179205《网络攻防技术与实践》第十一周作业 SQL注入攻击与实践

    <网络攻防技术与实践>第十一周作业 SQL注入攻击与实践 1.研究缓冲区溢出的原理,至少针对两种数据库进行差异化研究 缓冲区溢出原理   在计算机内部,输入数据通常被存放在一个临时空间内, ...

  3. Linux信息搜集

    ## 1.取证工具 - LiME 内存获取工具 - volatility 内存分析工具 ## 2.机器信息收集 #sysinfo 16 # # 查看当前登录用户 who > who.txt # ...

  4. C#匿名函数与Lambda表达式

    Lambda 表达式是一种可用于创建委托或表达式目录树类型的匿名函数. 通过使用 lambda 表达式,可以写入可作为参数传递或作为函数调用值返回的本地函数.在C#中的Linq中的大部分就是由扩展方法 ...

  5. Linux禁止ping的俩种方法【转】

    Linux禁止ping以及开启ping的方法   Linux默认是允许Ping响应的,系统是否允许Ping由2个因素决定的:A.内核参数,B.防火墙,需要2个因素同时允许才能允许Ping,2个因素有任 ...

  6. MVVM模式的命令绑定

    命令绑定要达到的效果 命令绑定要关注的核心就是两个方面的问题,命令能否执行和命令怎么执行.也就是说当View中的一个Button绑定了ViewModel中一个命令后,什么时候这个Button是可用的, ...

  7. C# byte[] 转换16进制字符串

    1.byte[] 转换16进制字符串 1.1 BitConverter方式 var str = DateTime.Now.ToString(); var encode = Encoding.UTF8; ...

  8. Focal Loss for Dense Object Detection 论文阅读

    何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确 ...

  9. Java基础83 JSP标签及jsp自定义标签(网页知识)

    1.JSP标签 替代jsp脚本,用于jsp中执行java代码1.1.内置标签:  <jsp:forward></jsp:forward>  相当于:request.getReu ...

  10. 洛谷P1186玛丽卡

    传送门啦 先跑一遍最短路,将最短路的路径记录下来,然后枚举每一条最短路的边,将其断掉,记录此时的1-n的时间,取其中最大的一个时间即为所求. (通过 $ cut[][] $ 和 $ f[] $ 进行操 ...