题意

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

意思就是说在给定的节点中计算出在同一条直线上的最大节点个数。

思路

这道题,题意很容易理解,但是需要注意的东西包括,如果你用斜率计算,那么就需要注意到精确度的问题,否则就会变成相等的斜率,无奈之下,只能提高精确度,比如说用long double,但这不是持久的办法,目前的办法是使用最大公约数。

其实我大概的思路已经想到了,就是第五种方法的思路,这道题没做出来的原因是,没有考虑到相同点以及相同的x的情况。

代码

#include <stdio.h>
#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>
#include <unordered_map>
#include <map>
#include <set>
using namespace std; /**
* Definition for a point. */
struct Point {
int x;
int y;
Point() : x(0), y(0) {}
Point(int a, int b) : x(a), y(b) {}
}; /**
* 第一种方法:将每一个顶点和其他的顶点进行计算得出斜率,
* 用hash保存下来,key为斜率,value为总个数
* 因为相同斜率的则在同一条线上
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints(vector<Point>& points) {
unordered_map<int, int> hash;
int maxCnt = 0; auto caculateK = [&](Point p1, Point p2) {
int k = (p2.y - p1.y)/(p2.x - p1.x);
return k;
}; for (int i = 0; i < points.size(); i++) {
Point pointA = points[i];
for (int j = 0; j < points.size() && i != j; j++) {
Point pointB = points[j];
int k = caculateK(pointA, pointB);
if (hash.find(k) != hash.end()) {
hash[k]++;
}
else {
hash.insert(make_pair(k, 1));
}
} // hash.clear();
} for (auto itr = hash.begin(); itr != hash.end(); itr++) {
maxCnt = std::max((*itr).second, maxCnt);
} return maxCnt + 2;
} /**
* 计算最大公约数
*/
int GCD(int a, int b) { if(b==0) return a;
else return GCD(b, a%b);
} /**
* 这个方法不再是使用斜率作为map的key,而是使用的是gcd(最大公约数)
* 总之结果就是overlap+localmax+vertical+1,
* 其中overlap代表的是完全相同的顶点,vertical代表的是只有x是相等的,因为相减会导致0
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints2(vector<Point>& points) {
if (points.size() < 2) {
return (int)points.size();
} int result = 0;
for (int i = 0; i < points.size(); i++) {
map<pair<int, int>, int> lines;
int localmax = 0, overlap = 0, vertical = 0; for (int j = i+1; j < points.size(); j++) {
// 相同的点的个数
if (points[j].x == points[i].x && points[j].y == points[i].y) {
overlap++;
continue;
}
else if (points[j].x == points[i].x) {
vertical++;
}
else {
int a=points[j].x-points[i].x, b=points[j].y-points[i].y;
int gcd=GCD(a, b); a/=gcd;
b/=gcd; lines[make_pair(a, b)]++;
localmax=std::max(lines[make_pair(a, b)], localmax);
} localmax=std::max(vertical, localmax);
} // 结果为
result = std::max(result, localmax+overlap+1); //这里加一是因为之前vertical只计算了一次
} return result;
} // 由于精确度问题,更改double
inline bool double_equal(double a, double b) { return abs(a-b) < 1e-10; }
inline bool double_less (double a, double b) { return a-b < -1e-10; } struct Line {
double r; // ratio ; slope
double t; // translation Line(Point p, Point q) { // math
if (q.x == p.x) r = 1e20, t = p.x;
else
{
r = (double) (q.y-p.y) / (double) (q.x-p.x);
t = p.y - p.x * r;
}
}
}; // 用作排序
bool operator < (const Line& a, const Line& b) {
return a.r == b.r ? a.t < b.t : a.r < b.r;
} // 依此来判断map中是否相等
bool operator == (const Line& a, const Line& b) {
return a.r == b.r && a.t == b.t;
} /**
* 这个思路最大的特点就是利用了一个结构体和set的原理
* 因为set可以自动去除掉重复的元素
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints4(vector<Point> &points) {
if (points.empty()) return 0; map<Line, set<Point*> > line_map; for (auto & a : points)
for (auto & b : points)
{
Line line(a,b);
line_map[line].insert(&a);
line_map[line].insert(&b);
} int ret = 1;
for (auto & pr : line_map) ret = max(ret,(int)pr.second.size()); return ret;
} /**
* 最直接最简单的做法
*
* @param points <#points description#>
*
* @return <#return value description#>
*/
int maxPoints5(vector<Point>& points) {
if(points.empty())
return 0;
else if(points.size() == 1)
return 1; int ret = 0;
for(int i = 0; i < points.size(); i ++)
{//start point
int curmax = 1; //points[i] itself
unordered_map<long double, int> kcnt; // slope_k count
int vcnt = 0; // vertical count
int dup = 0; // duplicate added to curmax
for(int j = 0; j < points.size(); j ++)
{
if(j != i)
{
long double deltax = points[i].x - points[j].x;
long double deltay = points[i].y - points[j].y;
if(deltax == 0 && deltay == 0) {
dup ++;
}
else if(deltax == 0)
{
if(vcnt == 0)
vcnt = 2;
else
vcnt ++;
curmax = max(curmax, vcnt);
}
else
{
long double k = deltay / deltax;
if(kcnt[k] == 0)
kcnt[k] = 2;
else
kcnt[k] ++;
curmax = max(curmax, kcnt[k]);
}
}
}
ret = max(ret, curmax + dup);
}
return ret;
} int main(int argc, const char * argv[]) {
vector<Point> points;
Point point1(0, 0), point2(94911151, 94911150), point3(94911152, 94911151), point4(5, 6);
points.push_back(point1);
points.push_back(point2);
points.push_back(point3); int result = maxPoints5(points);
cout << "result..." << result << endl;
return 0;
}

[LeetCode] Max Points on a Line 题解的更多相关文章

  1. LeetCode: Max Points on a Line 解题报告

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  2. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  3. [leetcode]Max Points on a Line @ Python

    原题地址:https://oj.leetcode.com/problems/max-points-on-a-line/ 题意:Given n points on a 2D plane, find th ...

  4. LeetCode:Max Points on a Line

    题目链接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight l ...

  5. 【leetcode】Max Points on a Line

    Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...

  6. [LeetCode OJ] Max Points on a Line

    Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...

  7. 【LeetCode】149. Max Points on a Line

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  8. [LintCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. Max Points on a Line leetcode java

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

随机推荐

  1. 戴尔游匣5577安装 ubuntu/mint

    这里以mint为例. 做好usb启动盘后, 启动到读秒的时候按上下方向键唤出如下选项: 在第二个选项里按 tab 键(上图界面有提示) 进去后有如下界面: 在后面加上参数: nouveau.modes ...

  2. 【技巧总结】Penetration Test Engineer[4]-Web-Security(文件处理、会话管理、访问控制、SSRF、反序列化漏洞)

    Web安全基础2 3.8.文件处理 1)文件上传 一个正常的业务需求,问题在于控制上传合法文件. 防御文件上传 客户端javascript校验(通常校验扩展名) 检查MIME类型 检查内容是否合法 随 ...

  3. ubuntu git 简单入门【转】

    转自:http://blog.chinaunix.net/uid-20718384-id-3334859.html 1. 安装 sudo apt-get install git-core 2.  初始 ...

  4. pymongo的几个操作

    # -*- coding: utf-8 -*- # @Time : 2018/9/11 17:16 # @Author : cxa # @File : mongotest.py # @Software ...

  5. python并发爬虫利器tomorrow(一)

    tomorrow是我最近在用的一个爬虫利器,该模块属于第三方的一个模块,使用起来非常的方便,只需要用其中的threads方法作为装饰器去修饰一个普通的函数,既可以达到并发的效果,本篇将用实例来展示to ...

  6. JUnit基本介绍

    一.什么是单元测试 单元测试(Unit  Testing)是指在计算机编程中,针对程序模块来进行正确性检验的测试工作.单元测试的特点如下: ※ 程序单元是应用最小的可测试部件,通常采用基于类或者类的方 ...

  7. 空洞卷积(dilated Convolution) 与感受野(Receptive Field)

    一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致 ...

  8. Oracle JDeveloper 10g 卡顿、花屏的解决方法

    1.JDeveloper 10g花屏的解决办法: 在Win7或WinXP环境下,JDeveloper10g可能产生花屏现象,给开发者造成困扰,解决方法如下: 打开{JDEV_HOME}\jdev\bi ...

  9. new Function和eval区别

    eval和new Function都可以动态解析和执行字符串.但是它们对解析内容的运行环境判定不同. eval中的代码执行时的作用域为当前作用域.它可以访问到函数中的局部变量. new Functio ...

  10. LeetCode446. Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...