浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一、欧几里得算法及其证明
1.定义:
欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b);
2.证明:
设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b;
①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b;
②设x不是b的因子,则x不是b和a-b的公因子;设x不是a的因子,则x不是b和a-b的公因子;所以可以得出GCD(a,b)=GCD(b,a-b);
③由a>=b知,a可表示为a=b*q+r;则a减去q个b剩下的数字即为r,所以GCD(a,b)=GCD(b,a%b);
3.一般代码:
(1)递归形式:
int gcd(int a,int b){return b?gcd(b,a%b):a;}
(2)迭代形式:
int gcd(int a,int b){
for(;;) {
if(b==0)return a;
int temp=a%b;
a=b;
b=temp;
}
}
4.几个性质:
(1)若GCD(a,b)=1,那么a,b两数互质。
(2)GCD(a,2a)=a;
(3)GCD(a,0)=a;
(4)GCD(a,b)=GCD(-a,b)=GCD(a,-b)=GCD(-a,-b);
(5)LCM(a,b)GCD(a,b)=ab(LCM为两数小公倍数);
(6)GCD(n,n+1)=1;
证明:
假设他们不是互素的,有公共因子q
n = p1 * 1,n + 1 = p2 * q;n+1 - n = q(p2 - p1)
则q(p2-p1) = 1;其中p2,p1均为整数,q >=2,可证不等。得证。
二、相关题目
1.[洛谷P1372]又是毕业季I
Description
老师想要挑出默契程度最大的k个人参与毕业晚会彩排。可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~)。这可难为了他,请你帮帮忙吧!PS:一个数的最大公约数即本身。
输入格式:两个空格分开的正整数n和k。(n>=k>=1)
输出格式:一个整数,为最大的默契值。
Solution
1.注意:“一个数的最大公约数即本身”:我们可以从性质(2)考虑:当两个数是倍数时,最大公约数即为较小的数,那么此时相对同一范围的其他组合这两个数的最大公约数相对较大。
2.在讨论几种特殊情况:k=1时,ans=n;k=2时,若n为偶数,则ans=n/2,若n为奇数,则ans=(n-1)/2;
3.有上述讨论我们发现:满足k*a<n的a的最大值即为答案。即选中的数字分别为a,2a,3a,......,ka,所以答案为a/b;
Code
#include<iostream>
using namespace std;
int main()
{
int a,b;
cin>>a>>b;
cout<<a/b<<"\n";
return 0;
}
2.[洛谷P1170]兔八哥与猎人
Description
兔八哥躲藏在树林旁边的果园里。果园有M × N棵树,组成一个M行N列的矩阵,水平或垂直相邻的两棵树的距离为1。兔八哥在一棵果树下。猎人背着猎枪走进了果园,他爬上一棵果树,准备杀死兔八哥。如果猎人与兔八哥之间没有其它的果树,猎人就可以看到兔八哥。现己知猎人和兔八哥的位置,编写程序判断兔子所在的位置是否安全.
输入格式:第一行为n,表示有n(n ≤ 100,000)组数据,每组数据的第一行为两个正整数ax和ay,表示猎人的位置,第二行为两个正整数bx和by,表示兔八哥的位置(1 ≤ ax, ay, bx, by ≤ 100,000,000)。
输出格式:共有n行,每行为“yes”或“no”表示兔八哥的位置是否安全。
Solution
1.读题后我们可以将题目化简:求两坐标为整数的点确定的直线上两点间是否还存在另一坐标均为整数的点;
2.那么我们可以以猎人的坐标为原点,建立坐标系,设猎人(x1,y1),兔子(x2,y2),那么我们把兔子的坐标改为(x2-x1,y2-y1);
3.那么如何确定该点与原点间没有其他坐标为整数的点呢?通过画图我们可以发现,只要该点坐标互质即能满足要求,由性质(1)知等价于GCD(x,y)=1;
4.由性质(4)我们知道,两数的符号号并不影响它们的最大公约数所以对坐标取绝对值再计算;
5.注意本题有多组数据;
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int gcd(int a,int b){return b?gcd(b,a%b):a;} //GCD;
int main(){
int n,x1,x2,y1,y2,i,j,k;
scanf("%d",&n);
for(i=1;i<=n;++i){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if(x1==x2&&y1==y2){ //特判,两者坐标重合时,GCD=0,而兔子有危险;
printf("no\n");
continue;
}
x2=abs(x2-x1);
y2=abs(y2-y1);
if(gcd(x2,y2)==1)printf("no\n");
else printf("yes\n");
}
return 0;
}
3.[洛谷P2651]添加括号III
Description
现在给出一个表达式,形如a1/a2/a3/.../an;如果直接计算,就是一个个除过去,比如1/2/1/4=1/8。然而小A看到一个分数感觉很不舒服,希望通过添加一些括号使其变成一个整数。一种可行的办法是(1/2)/(1/4)=2。现在给出这个表达式,求问是否可以通过添加一些括号改变运算顺序使其成为一个整数。
输入格式:一个测试点中会有多个表达式。第一行t,表示表达式数量。对于每个表达式,第一行是n,第二行n个数,第i个数表示ai。
输出格式:输出t行。对于每个表达式,如果可以通过添加括号改变顺序使其变成整数,那么输出“Yes”,否则输出“No”
Solution
1.我们可以发现,为了使其结果尽可能为整数,我们应使分母最大,分子最小;
2.那么我们发现,a2无论如何都是在分母上的,那么我们这样添加括号即可:a1/(a2/a3/.../an)=a1a3...*an/a2,此时满足分母最大,分子最小;
3.那么我们需要进行约分:对每一个分子都和分母求一次GCD,每次求后令分母除以GCD,到最后一项时若分母=1,则结果为整数;
4.注意本题有多组数据;
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int gcd(int a,int b){return b?gcd(b,a%b):a;} //GCD
int main(){
int t,n,i,j;
scanf("%d",&t);
for(i=1;i<=t;++i){
scanf("%d",&n);
int a[n+1]={};
for(j=1;j<=n;++j) scanf("%d",&a[j]);
a[2]/=gcd(a[1],a[2]);
for(j=3;j<=n;++j) a[2]/=gcd(a[2],a[j]);
if(a[2]==1)printf("Yes\n");
else printf("No\n");
}
return 0;
}
4.[洛谷P1029]最大公约数与最小公倍数问题
题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8514163.html
5.[CodePlus 2017 11月赛]晨跑
题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8514190.html
6.[BZOJ 2257][JSOI 2009] 瓶子和燃料
题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8995031.html
浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用的更多相关文章
- 浅谈Stein算法求最大公约数(GCD)的原理及简单应用
一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: ...
- 欧几里得算法求最大公约数(gcd)
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...
- 欧几里得算法求最大公约数-《Algorithms Fourth Edition》第1章
最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公 ...
- 关于欧几里得算法求最大公约数,即OJ1029的参考解法
#include <stdio.h> int main(int argc, char *argv[]) { int a,b,c; scanf("%d %d",& ...
- 浅谈可持久化Trie与线段树的原理以及实现(带图)
浅谈可持久化Trie与线段树的原理以及实现 引言 当我们需要保存一个数据结构不同时间的每个版本,最朴素的方法就是每个时间都创建一个独立的数据结构,单独储存. 但是这种方法不仅每次复制新的数据结构需要时 ...
- [算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找 ...
- 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...
- 分解质因数法求最大公约数(javascrip实现)
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- 浅谈倍增法求解LCA
Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...
随机推荐
- Delphi控件-复合控件【转】
复合控件复合控件是Delphi控件中非常重要的一种控件,复合控件就是将两个或两个以上的控件重新组合成一个新的控件.例如TspinEdit.TlabeledEdit.TDBNavigator等就是复合控 ...
- Envoy如何打败Linkerd成为L7负载平衡器的最佳选择?
本文转自:http://www.servicemesh.cn/?/article/41 作者:MIKE WHITE 翻译:姚炳雄 原文:Using Envoy to Load Balance gRPC ...
- 面试问题总结二(技术能力-PHP)----Ⅱ
20.支付功能的实现? 答:在线支付一般来说有两种实现方式,一种是调用各个银行提供的接口,另一种是使用第三方集成好的支付功能,两种方式各有优劣.对于第三方支付来说会需要提交企业5证来验证,还会有部分手 ...
- vue 笔记1
created 钩子可以用来在一个实例被创建之后执行代码: new Vue({ data: { a: 1 }, created: function () { // `this` 指向 vm 实例 co ...
- poj 1144(割点)
题目链接:http://poj.org/problem?id=1144 题意:给出一个无向图,求关键节点的个数. 分析:双连通分量Tarjan算法直接求割点就行了,裸的模板题. AC代码: #incl ...
- 高性能页面加载技术--BigPipe设计原理及Java简单实现
1.技术背景 动态web网站的历史可以追溯到万维网初期,相比于静态网站,动态网站提供了强大的可交互功能.经过几十年的发展,动态网站在互动性和页面显示效果上有了很大的提升,但是对于网站动态网站的整体页面 ...
- php三种方法从控制结构或脚本中跳出
PHP中,如果希望停止一段代码,根据需要达到的效果不同,可以有三种方法实现: 1. break: 如果在循环中使用了break语句,脚本就会从循环体后面的第一条语句开始执行: 2. continue: ...
- Scalable IO in Java【java高效IO】
第一次翻译,如有错误,请指正 1.Outline 大纲Scalable network services 高效网络服务 Event-driven processing 事件驱动处理 Reactor ...
- 【刷题】BZOJ 3524 [Poi2014]Couriers
Description 给一个长度为n的序列a.1≤a[i]≤n. m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2.如果存在,输出这个数,否则输出0 ...
- MySql数据库迁移图文展示
MySql数据库的数据从一台服务器迁移到另外一台服务器需要将数据库导出,再从另外一台服务器导入.方法有很多,MySql配套的相关工具都有这个功能.phpMyAdmin就可以做,但是这个加载起来慢,推荐 ...