Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

Approach #1: C++. [DFS]

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) return 0; c_ = vector<int>(n, 0);
l_ = vector<int>(n, 0); int max_len = 0;
for (int i = 0; i < n; ++i)
max_len = max(max_len, len(nums, i)); int ans = 0;
for (int i = 0; i < n; ++i)
if (len(nums, i) == max_len)
ans += count(nums, i); return ans;
} private:
vector<int> c_;
vector<int> l_; // find the total number of increasing subsequence from i to n of the index.
int count(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (c_[n] > 0) return c_[n]; int total_count = 0;
int l = len(nums, n); // find the number of increasing subsequence which is short than current subsquence.
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i] && len(nums, i) == l-1)
total_count += count(nums, i); if (total_count == 0)
total_count = 1; return c_[n] = total_count;
} // find the max length of increasing subsequence from i to n of the index.
int len(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (l_[n] > 0) return l_[n]; int max_len = 1; for (int i = 0; i < n; ++i)
if (nums[n] > nums[i])
max_len = max(max_len, len(nums, i) + 1); return l_[n] = max_len;
} };

  

Appraoch #2: Interation. [Java]

class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0; int[] c = new int[n];
int[] l = new int[n]; Arrays.fill(c, 1);
Arrays.fill(l, 1); for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j])
if (l[j] + 1 > l[i]) {
l[i] = l[j] + 1;
c[i] = c[j];
} else if (l[j] + 1 == l[i]){
c[i] += c[j];
}
}
} int max_len = 0;
for (int i = 0; i < n; ++i)
if (l[i] > max_len)
max_len = l[i]; int ans = 0;
for (int i = 0; i < n; ++i) {
if (l[i] == max_len)
ans += c[i];
} return ans;
}
}

  

Analysis:

The idea is to use two arrays l[n] ans c[n] to record the maximum length os Incresing Subsequence ans the coresponding number of there sequence which ends with nums[i], respectively. That is:

l[i]: the lenght of the Longest Increasing Subseuqence which ends with nums[i].

c[i]: the number of the Longest Increasing Subsequence which ends with nums[i].

Then, the result is the sum of each c[i] while its corresponding l[i] is the maximum length.

Reference:

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107293/JavaC%2B%2B-Simple-dp-solution-with-explanation

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-673-number-of-longest-increasing-subsequence/

673. Number of Longest Increasing Subsequence的更多相关文章

  1. Week 12 - 673.Number of Longest Increasing Subsequence

    Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...

  2. 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)

    [LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...

  3. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  4. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  5. 【LeetCode】673. Number of Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...

  6. LeetCode 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  7. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  8. [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  9. LeetCode Number of Longest Increasing Subsequence

    原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...

随机推荐

  1. Golang之定义错误(errors)

    基本示例: package main //定义错误 //error 也是个接口 import ( "errors" "fmt" ) var errNotFoun ...

  2. js点击添加

    1.点击变色 <div id="dd" style="width:100px;height: 100px;background-color: #ccc"& ...

  3. "UX"将会是下一个Buzzword?

    “用户体验非常重要”.“没有用户体验就没有产品”.“UX就是一切”.不知道从何时开始,用户体验(UX) 这个名词已经变得如此多见了,但是人们真正的认识.认清了什么是用户体验了吗?设计师们常挂在嘴边的用 ...

  4. linux 基本工具相关

    首先是linux下安装ssh服务(root) 由于是使用debian版本 与其他稍有差别 安装服务 apt-get install ssh 查看服务是否开启 service ssh status 开启 ...

  5. KOBAS

    1. What is KOBAS 3.0? KOBAS (KEGG Orthology Based Annotation System) is a web server for gene/protei ...

  6. 2018.09.28 牛客网contest/197/B面积并(二分+简单计算几何)

    传送门 比赛的时候把题目看成求面积交了,一直没调出来. 下来发现是面积并气的吐血. 码了一波发现要开long double. 然而直接用现成的三角函数会挂. 因此需要自己手写二分求角度. 大致思路就是 ...

  7. linux将程序扔到后台并获取程序的进程号

    我们经常需要写一些执行时间较长的程序,但是如果在程序执行过程中超时了,有许多原因,可能是程序已经挂起了,这时就需要杀死这样的进程,则可以通过如下的命令执行: java -jar TestProcess ...

  8. spring 课程

    官网 参考文档 // 1. Spring_HelloWorld 20:22 // 2. Spring_IOC&DI概述 08:07 // 3. Spring_配置 Bean 21:58 // ...

  9. C++总的const使用说明

    C++总的const使用说明 1. const修饰类成员变量 程序: #include <iostream> using namespace std; class A { public: ...

  10. Flash CC2015软件安装教程

    FLCC2015/64位下载地址: 链接:https://pan.baidu.com/s/1c1WoTTu 密码:k4hn 软件介绍: Flash是一种动画创作与应用程序开发于一身的创作软件.Flas ...