673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
Approach #1: C++. [DFS]
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) return 0;
c_ = vector<int>(n, 0);
l_ = vector<int>(n, 0);
int max_len = 0;
for (int i = 0; i < n; ++i)
max_len = max(max_len, len(nums, i));
int ans = 0;
for (int i = 0; i < n; ++i)
if (len(nums, i) == max_len)
ans += count(nums, i);
return ans;
}
private:
vector<int> c_;
vector<int> l_;
// find the total number of increasing subsequence from i to n of the index.
int count(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (c_[n] > 0) return c_[n];
int total_count = 0;
int l = len(nums, n);
// find the number of increasing subsequence which is short than current subsquence.
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i] && len(nums, i) == l-1)
total_count += count(nums, i);
if (total_count == 0)
total_count = 1;
return c_[n] = total_count;
}
// find the max length of increasing subsequence from i to n of the index.
int len(const vector<int>& nums, int n) {
if (n == 0) return 1;
if (l_[n] > 0) return l_[n];
int max_len = 1;
for (int i = 0; i < n; ++i)
if (nums[n] > nums[i])
max_len = max(max_len, len(nums, i) + 1);
return l_[n] = max_len;
}
};
Appraoch #2: Interation. [Java]
class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] c = new int[n];
int[] l = new int[n];
Arrays.fill(c, 1);
Arrays.fill(l, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j])
if (l[j] + 1 > l[i]) {
l[i] = l[j] + 1;
c[i] = c[j];
} else if (l[j] + 1 == l[i]){
c[i] += c[j];
}
}
}
int max_len = 0;
for (int i = 0; i < n; ++i)
if (l[i] > max_len)
max_len = l[i];
int ans = 0;
for (int i = 0; i < n; ++i) {
if (l[i] == max_len)
ans += c[i];
}
return ans;
}
}
Analysis:
The idea is to use two arrays l[n] ans c[n] to record the maximum length os Incresing Subsequence ans the coresponding number of there sequence which ends with nums[i], respectively. That is:
l[i]: the lenght of the Longest Increasing Subseuqence which ends with nums[i].
c[i]: the number of the Longest Increasing Subsequence which ends with nums[i].
Then, the result is the sum of each c[i] while its corresponding l[i] is the maximum length.
Reference:
673. Number of Longest Increasing Subsequence的更多相关文章
- Week 12 - 673.Number of Longest Increasing Subsequence
Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...
- 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)
[LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...
- [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- 【LeetCode】673. Number of Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...
- LeetCode 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- LeetCode Number of Longest Increasing Subsequence
原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...
随机推荐
- Golang之定义错误(errors)
基本示例: package main //定义错误 //error 也是个接口 import ( "errors" "fmt" ) var errNotFoun ...
- js点击添加
1.点击变色 <div id="dd" style="width:100px;height: 100px;background-color: #ccc"& ...
- "UX"将会是下一个Buzzword?
“用户体验非常重要”.“没有用户体验就没有产品”.“UX就是一切”.不知道从何时开始,用户体验(UX) 这个名词已经变得如此多见了,但是人们真正的认识.认清了什么是用户体验了吗?设计师们常挂在嘴边的用 ...
- linux 基本工具相关
首先是linux下安装ssh服务(root) 由于是使用debian版本 与其他稍有差别 安装服务 apt-get install ssh 查看服务是否开启 service ssh status 开启 ...
- KOBAS
1. What is KOBAS 3.0? KOBAS (KEGG Orthology Based Annotation System) is a web server for gene/protei ...
- 2018.09.28 牛客网contest/197/B面积并(二分+简单计算几何)
传送门 比赛的时候把题目看成求面积交了,一直没调出来. 下来发现是面积并气的吐血. 码了一波发现要开long double. 然而直接用现成的三角函数会挂. 因此需要自己手写二分求角度. 大致思路就是 ...
- linux将程序扔到后台并获取程序的进程号
我们经常需要写一些执行时间较长的程序,但是如果在程序执行过程中超时了,有许多原因,可能是程序已经挂起了,这时就需要杀死这样的进程,则可以通过如下的命令执行: java -jar TestProcess ...
- spring 课程
官网 参考文档 // 1. Spring_HelloWorld 20:22 // 2. Spring_IOC&DI概述 08:07 // 3. Spring_配置 Bean 21:58 // ...
- C++总的const使用说明
C++总的const使用说明 1. const修饰类成员变量 程序: #include <iostream> using namespace std; class A { public: ...
- Flash CC2015软件安装教程
FLCC2015/64位下载地址: 链接:https://pan.baidu.com/s/1c1WoTTu 密码:k4hn 软件介绍: Flash是一种动画创作与应用程序开发于一身的创作软件.Flas ...