bzoj 3144
思路:
xxy;
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 64005
#define INF 0x3f3f3f3f
const int dx[]={,-,,,};
const int dy[]={,,,,-};
int deep[maxn],head[maxn],E[maxn<<],V[maxn<<],F[maxn<<],ans;
int n,m,r,d,ai[][][],id[][][],s,t,cnt,que[maxn];
inline void in(int &now)
{
char Cget=getchar();now=;
while(Cget>''||Cget<'') Cget=getchar();
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
}
inline void edge_add(int u,int v,int f)
{
E[++cnt]=head[u],V[cnt]=v,F[cnt]=f,head[u]=cnt;
E[++cnt]=head[v],V[cnt]=u,F[cnt]=,head[v]=cnt;
}
bool bfs()
{
for(int i=s;i<=t;i++) deep[i]=-;
deep[s]=,que[]=s;int h=,tail=,now;
while(h<tail)
{
now=que[h++];
for(int i=head[now];i;i=E[i])
if(F[i]&&deep[V[i]]<)
{
deep[V[i]]=deep[now]+;
if(V[i]==t) return true;
que[tail++]=V[i];
}
}
return false;
}
int flowing(int now,int flow)
{
if(now==t||flow<=) return flow;
int oldflow=,pos;
for(int i=head[now];i;i=E[i])
{
if(deep[V[i]]!=deep[now]+||!F[i]) continue;
pos=flowing(V[i],min(flow,F[i]));
F[i]-=pos,F[i^]+=pos,flow-=pos,oldflow+=pos;
if(!flow) return oldflow;
}
if(!oldflow) deep[now]=-;
return oldflow;
}
int main()
{
in(n),in(m),in(r),in(d);
for(int i=;i<=r;i++)
for(int v=;v<=n;v++)
for(int e=;e<=m;e++) in(ai[i][v][e]),id[i][v][e]=++cnt;
s=,t=cnt+,cnt=;
for(int i=;i<=n;i++)
for(int v=;v<=m;v++)
edge_add(s,id[][i][v],ai[][i][v]),edge_add(id[r][i][v],t,INF);
for(int z=;z<=r;z++)
{
for(int i=;i<=n;i++)
for(int v=;v<=m;v++) edge_add(id[z-][i][v],id[z][i][v],ai[z][i][v]);
if(z>d)
{
for(int i=;i<=n;i++)
for(int v=;v<=m;v++)
for(int e=;e<=;e++)
if(i+dx[e]>&&i+dx[e]<=n&&v+dy[e]>&&v+dy[e]<=m)
edge_add(id[z][i][v],id[z-d][i+dx[e]][v+dy[e]],INF);
}
}
while(bfs()) ans+=flowing(s,INF);
printf("%d\n",ans);
return ;
}
bzoj 3144的更多相关文章
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3144] 切糕
Link: BZOJ 3144 传送门 Solution: 发现要把点集分成不连通的两部分,最小割的模型还是很明显的 首先我们将原图转化为$R+1$层,从而将点权化为边权 关键还是在于建图是怎么保证$ ...
- [BZOJ 3144][HNOI 2013] 切糕
题目大意 切糕是 (p times q times r) 的长方体,每个点有一个违和感 (v_{x, y, z}).先要水平切开切糕(即对于每个纵轴,切面与其有且只有一个交点),要求水平上相邻两点的切 ...
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- BZOJ 3144 切糕(最小割)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3144 题意: 思路:我们假设没有那个D的限制.这样就简 单了.贪心的话,我们只要在每一个 ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
- bzoj 3144 切糕 —— 最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层: 然后每个点的第 t 层 ...
随机推荐
- day17 包装类、日期类
包装类 作用:1.丰富了基本数据类型只能存放值的问题,还提供了大量的方法或常量. 2.包装类充当了基本数据类型和引用数据类型转换的桥梁. 应用层面:包装类.String.基本数据类型的互相转换. 1. ...
- static的局限
static 的缺陷: 1.它只能调用static 变量. 2.它只能调用static方法. 3.不能引用this super 4.static变量在定义时必须初始化,且初始化的时间要早于非静态变量 ...
- 【数据库-MySql】清空所有表格的所有数据
方式一. drop procedure if exists del_all_tb; delimiter $$ create procedure del_all_tb(db char(20)) begi ...
- 51nod 1534 棋子游戏
1534 棋子游戏 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 http://www.51nod.com/onlineJudg ...
- android studio run 的时候,报the apk file does not exist on disk,
1.首先 clean rebuild,重启,不能解决的话,再找到这个 然后是这里: 不用填,点ok,ok即可,他喵的,卡我俩小时
- ETL testing
https://www.tutorialspoint.com/etl_testing/index.htm querysurge-installer-6.0.5-linux-x64 测试ETL的工具.
- 详细讲解安全升级MySQL的方法
MySQL升级是非常必要的. 我们在Percona Support上列出了关于MySQL升级最佳实践的各种问题.这篇文章推荐了一些不同情况下升级MySQL的方法. 为什么MySQL升级是必须的? 原因 ...
- opencv的基本数据结构(一)(转)
从2001年以来,opencv的函数库一直是基于C接口构建的,因此在opencv1.0版本中,一般使用IplImage的C结构体在内存中存储图像,因此,我们在很多较经典的书籍或者开源项目中依然可见Ip ...
- oracle常见错误对应代码与含义
本篇文章是对oracle错误代码进行了详细的总结与分析,需要的朋友参考下 ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会 ...
- 判断最小生成树是否为一(krustra)
题目链接:https://vjudge.net/contest/66965#problem/K 具体思路: 首先跑一遍最短路算法,然后将使用到的边标记一下,同时使用一个数组记录每一个权值出现的次数,如 ...