2017 will see a host of informed predictions, lower costs, and even business-centric gains, courtesy of the global adoption of Big Data and associated technologies.

2017 is already upon us, and Big Data seems to be growing in leaps and bounds. Be it the exteriors of IoT or the more intricate aspects of cloud computing, enterprise technologies are on the way up, facilitating dramatic transformations.

Many companies are embracing Big Data as the newest fad, mainly as an advantage in this competitive era. In this post, we will be talking about some of the predictions made by Oracle concerning Big Data and its future in 2017.

1. Embracing the Era of Machine Learning

Machine learning was previously restricted to data scientists, but 2017 will bring it out into the open. Be it Google’s newest ranking algorithm or electronic gadgets par excellence, machine learning will find a foothold to work with. Big Data was pretty big in 2016 and is expected to grow bigger in the existing year, with machine learning at the hindsight.

Be it an array of tools for business analysts or back-end benefits, machine learning will be making a few inroads in an otherwise monotonous domain of Big Data. This will change the way governments and enterprises handle data sets across physical and virtual servers. Prospective areas of change will include healthcare automation and energy.

2. Cloud-Data Cohesion

Big Data has always been known to respond well to cloud-based servers, but 2017 will amplify its reach. Be it privacy issues concerning cloud adoption or data sovereignty, things are expected to improve. With bigger data sets in the picture, most enterprises might shift to virtual servers because of the ambiguities associated with relocations.

Bringing cloud to data is what looks like a prospective change in 2017 as compared to shifting data to the cloud. Cloud strategies specific to data requirements will be of paramount importance.

3. Data-Driven Applications

Big Data technologies were previously known for their impact in the field of Information Technology. However, recent trends have guaranteed a higher adoption rate for a host of analytic and even entrepreneurial applications. Be it a wide-array of AI-powered applications or streaming clients like Megabox, every enterprise will soon be making that Big Data shift — along with their futuristic applications.

4. IoT and Its Integration

Internet of Things received a lot of criticism owing to the barrage of absurdly designed gadgets. As much as we second the lack of innovation in IoT, Big Data might just revive the same, courtesy of high-end intuition. Be it mobile-centric applications or household gadgets, pairing IoT with Big Data is expected to be a revolutionary step in 2017.

IoT application development will be a lot simpler and the impacts (or rather, ripples) will be felt even at a distance. We are looking at smart cities and even smarter nation-wide projects.

5. Data Virtualization: A Reality

When it comes to entrepreneurial charades, the proliferation of data silos is common. Be it working with the likes of NoSQL, Spark or even Hadoop, databases will surely get a boost in 2017. It must be known that dark data sets are often hard to access as organizations fail to identify the perfect repositories for the same. Unified access, an elusive entity, will get a boost in 2017 courtesy the emergence of data virtualization.

This approach will render steadfastness to analytics and Big Data adoption, as data movement is no longer necessary.

6. Working With Kafka

Big Data predictions feel incomplete with the mention of Kafka, a technology put forth by Apache. While Kafka is already growing in leaps and bounds, it might just peak by the third quarter of 2017. To be exact, Kafka is expected to be the much-awaited runway for the Big Data technology.

Otherwise a bus-styled technology, in terms of architecture, Kafka can easily handle data structures and even myriad data sets — focusing largely on the data lake and its proliferation and facilitating subscriber access.

7. Boom in Cloud Data Systems (Prepackaged and Integrated)

Building a conventional data lab is difficult and that too from the scratch. However, organizations are increasingly becoming reliant on Big Data, facilitating the growth of integrated cloud data systems. These are pre-packaged entities including data science, analytics, data wrangling, and even the complexities of data integration.

2017 will witness a steady growth in the adoption of pre-packaged cloud systems dedicated to Big Data reservoirs.

8. An Alternate to the Hadoop HDFS

Hadoop’s HDFS has long been the most sought-after data accommodation platform, but object stores are expected to trump the same in 2017. The reasons for the same are better data replication, availability, and backup.

Moreover, feasibility is a bonus when Object Stores are concerned. These are repositories to Big Data based on the same data-tier technology as the HDFS.

9. Deep Learning Even at the Cloud Level

As mentioned, data virtualization will now be easier sans added layers. This approach will, therefore, boost a host of acceleration technologies including NVMe and even GPUs. In 2017, we will also get to see deep learning joining hands with Big Data metrics. Visible results will include nonblocking, high-capacity, improved I/O, and even better network performances.

10. Hadoop Turns Vital

Users and companies looking to leverage Big Data were using Hadoop sparingly but in 2017 we might see multi-level deployment in every possible, Data-centric project. Hadoop security will come across as a non-optional entity and would require possible applications— in every field.

Bottom Line

Big Data is on a rampage and the growth scale is absolutely second to none. However, with the emergence of IoT and even social media, snappier Big Data applications have received overwhelming responses.

In 2017, we will surely be seeing a host of informed predictions, lower costs, and even business-centric gains, courtesy of the global adoption of Big Data and associated technologies.

10 Big Data Possibilities for 2017 Based on Oracle's Predictions的更多相关文章

  1. [Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent component re-renders. Instead, use a data or computed property based on the prop's value. Prop being

    [Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent c ...

  2. vue报错 [Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent component re-renders. Instead, use a data or computed property based on the prop's

    [Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent c ...

  3. Populating Tabular Data Block Manually Using Cursor in Oracle Forms

    Suppose you want to populate a non-database data block with records manually in Oracle forms. This t ...

  4. [CareerCup] 10.2 Data Structures for Large Social Network 大型社交网站的数据结构

    10.2 How would you design the data structures for a very large social network like Facebook or Linke ...

  5. Oracle涂抹oracle学习笔记第10章Data Guard说,我就是备份

    DG 是备份恢复工具,但是更加严格的意义它是灾难恢复 Data Guard是一个集合,由一个Primary数据库及一个或者多个Standby数据库组成,分两类逻辑Standby和物理Standby 1 ...

  6. 报错:[Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent component re-renders. Instead, use a data or computed property based on the prop's value. Prop bei

    项目中遇到父组件传值 activeIndex <Tabs :tabs="tabs" :activeIndex="activeIndex" >< ...

  7. plsql developer 10注册码----亲测截止2017年5月6可用

    亲测截止2017年5月6可用 Product Code:4t46t6vydkvsxekkvf3fjnpzy5wbuhphqzserial Number:601769password:xs374ca

  8. 【你吐吧c#每日学习】11.10 C# Data Type conversion

    implicit explicit float f=12123456.213F int a = Convert.ToInt32(f); //throw exception or int a = (in ...

  9. Windows 10上强制Visual Studio 2017 以管理员身份运行

    1. 打开VS的安装目录,找到devenv.exe,右键,选择“兼容性疑难解答”. 2. 选择“疑难解答程序” 3. 选择“该程序需要附加权限” 4. 确认用户帐户控制后,点击测试程序,不然这个对话框 ...

随机推荐

  1. 【BZOJ】1016: [JSOI2008]最小生成树计数

    题解 考虑kruskal 我们都是从边权最小的边开始取,然后连在一起 那我们选出边权最小的一堆边,然后这个图就分成了很多联通块,把每个联通块内部用矩阵树定理算一下生成树个数,再把联通块缩成一个大点,重 ...

  2. MySQL性能优化(七·下)-- 锁机制 之 行锁

    一.行锁概念及特点 1.概念:给单独的一行记录加锁,主要应用于innodb表存储引擎 2.特点:在innodb存储引擎中应用比较多,支持事务.开销大.加锁慢:会出现死锁:锁的粒度小,并发情况下,产生锁 ...

  3. 2017-2018-1 20179202《Linux内核原理与分析》第八周作业

    一 .可执行程序的装载 1. 预处理.编译.链接 gcc –e –o hello.cpp hello.c //预处理 gcc -x cpp-output -S -o hello.s hello.cpp ...

  4. vue 组件使用中的细节点

    1.is属性 有些 HTML 元素,诸如 <ul>.<ol>.<table> 和 <select>,对于哪些元素可以出现在其内部是有严格限制的.而有些元 ...

  5. 【小思考】Python的float转换精度损失所想到的

    首先,为啥会要讨论这个问题. 我得为昨天拖了小组后腿深表歉意.其实程序逻辑很快就理通了的,但自己总是会因为各种各样的小问题束缚手脚,看接下来这个图片: 稍微有数据敏感性的同学就能看出,中间这么一大堆又 ...

  6. 【原创】MySQL CPU %sys高的案例分析(一)

    [现象] 最近关注MySQL CPU告警的问题时,发现有一种场景,有一些服务器最近都较频繁的出现CPU告警,其中的现象是 SYS CPU占比较高. 下面的截图来源于“MySQL CPU报警”采集的文件 ...

  7. 300万大奖:欢迎参加美团联合主办的全球AI挑战赛

    2018年8月29日,由美团.创新工场.搜狗.美图联合主办的“AI Challenger 2018全球AI挑战赛”正式启动.美团CTO罗道峰.创新工场CEO李开复.搜狗CEO王小川和美图CEO吴欣鸿共 ...

  8. s3c2440地址分配

    mini2440的地址怎么分配.mini2440处理器的地址怎么分配. S3C2440处理器可以使用的物理地址空间可以达到4GB,其中前1GB的地址为连接外设的地址空间.>1G的地址空间 分配给 ...

  9. 【BZOJ 3470】3470: Freda’s Walk 期望

    3470: Freda’s Walk Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 42  Solved: 22 Description 雨后的Poet ...

  10. Python进阶篇:Socket多线程

    1. 初识Socket server和clinet之间的交互方式 2. 客户端和服务端的单次交互 ==================================== 服务端 import soc ...