Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
   
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553 转载:http://blog.csdn.net/non_cease/article/details/7814970

题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。

思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; const double eps = 1e-;
const int maxn = ; int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point {
double x, y;
} p[maxn]; struct Line {
Point a, b;
double angle;
} l[maxn], tmp[maxn]; int dblcmp(double k) {
if (fabs(k) < eps) return ;
return k > ? : -;
} double multi(Point p0, Point p1, Point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
} bool cmp(int u, int v) {
int d = dblcmp(l[u].angle-l[v].angle);
if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > ;
return d < ;
} void getIntersect(Line l1, Line l2, Point& p) {
double dot1,dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
} bool judge(Line l0, Line l1, Line l2) {
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < ;
} void addLine(double x1, double y1, double x2, double y2) {
l[ln].a.x = x1; l[ln].a.y = y1;
l[ln].b.x = x2; l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
ln++;
} bool halfPlaneIntersection(Line l[], int n) {
int i, j;
for (i = ; i < n; i++) order[i] = i;
sort(order, order+n, cmp);
for (i = , j = ; i < n; i++)
if (dblcmp(l[order[i]].angle-l[order[j]].angle) > )
order[++j] = order[i];
n = j + ;
dq[] = order[];
dq[] = order[];
bot = ;
top = ;
for (i = ; i < n; i++) {
while (bot < top && judge(l[order[i]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[order[i]], l[dq[bot+]], l[dq[bot]])) bot++;
dq[++top] = order[i];
}
while (bot < top && judge(l[dq[bot]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[dq[top]], l[dq[bot+]], l[dq[bot]])) bot++;
if (bot + >= top) return false; //当dq中少于等于两条边时,说明半平面无交集
return true;
} double getDis(Point a, Point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void changePolygon(double h) { //每次将直线向里面平移距离h
double len, dx, dy;
for (int i = ; i < ln; i++) {
len = getDis(l[i].a, l[i].b);
dx = (l[i].a.y - l[i].b.y) / len * h;
dy = (l[i].b.x - l[i].a.x) / len * h;
tmp[i].a.x = l[i].a.x + dx;
tmp[i].a.y = l[i].a.y + dy;
tmp[i].b.x = l[i].b.x + dx;
tmp[i].b.y = l[i].b.y + dy;
tmp[i].angle = l[i].angle;
}
} double BSearch() {
double l = , r = , mid;
while (l + eps < r) {
mid = (l + r) / ;
changePolygon(mid);
if (halfPlaneIntersection(tmp, ln))
l = mid;
else r = mid;
}
return l;
} int main()
{
int i; while (scanf ("%d", &pn) && pn) {
for (i = ; i < pn; i++)
scanf ("%lf%lf", &p[i].x, &p[i].y);
for (i = ln = ; i < pn-; i++)
addLine(p[i].x, p[i].y, p[i+].x, p[i+].y);
addLine(p[i].x, p[i].y, p[].x, p[].y); printf ("%.6lf\n", BSearch());
}
return ;
}

POJ 3525 Most Distant Point from the Sea (半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  8. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  9. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

随机推荐

  1. PHP不使用内置函数intval(),实现字符串转整数

    平时我们用PHP时,将字符串转化为整型时,一般都是使用 intval() 内置函数,那么如果我们自己写,怎么写一个呢? 此时我们可以利用 ASCII 码计算得整数的特性,因为每个字符都对应一个 ASC ...

  2. Validform验证插件

    http://validform.club/index.html

  3. git如何撤销工作区的修改

    对工作区中文件的修改分为三种情况: (1)还没有git add (2)已经git add (3)已经git add,并再次进行修改 对于第一种情况,直接使用git checkout -- 文件,即可撤 ...

  4. Learning OSG programing---Multi Camera in Multi window 在多窗口中创建多相机

    这个例子演示了在多个窗口中创建多个相机,函数的代码如下: void multiWindowMultipleCameras(osgViewer::Viewer& viewer,bool mult ...

  5. 微信小程序(一)--微信小程序的介绍

    一.微信小程序简介 小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用.也体现了“用完即走”的理念,用户不用关心是否安装太多应用的问题.应用将无 ...

  6. spring-第四篇之让bean获取所在的spring容器

    1.如上一篇文章所述,有时候bean想发布一些容器事件,就需要先获取spring容器,然后将Event交由spring容器将事件发布出去. 为了让bean获取它所在的spring容器,可以让该bean ...

  7. 命令行打包war包

    输入jar -cvf  包名.war  目录/*

  8. P2634 [国家集训队]聪聪可可(题解)(点分治)

    P2634 [国家集训队]聪聪可可(题解)(点分治) 洛谷题目 #include<iostream> #include<cstdlib> #include<cstdio& ...

  9. Django文件上传下载与富文本编辑框

    django文件上传下载 上传 配置settings.py # 设定文件的访问路径,如:访问http://127.0.0.1:8000/media/就可以获取文件 MEDIA_URL = '/medi ...

  10. wireshark自动化之tshark命令行

    tshark是wireshark安装目录下命令行工具 使用tshark可以通过自动化方式调用wireshark tshark -a duration:30 抓包30秒-w cap.cap 保存为cap ...