POJ 3525 Most Distant Point from the Sea (半平面交)
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
n | ||
x1 | y1 | |
⋮ | ||
xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
Sample Output
5000.000000
494.233641
34.542948
0.353553 转载:http://blog.csdn.net/non_cease/article/details/7814970
题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。
思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; const double eps = 1e-;
const int maxn = ; int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point {
double x, y;
} p[maxn]; struct Line {
Point a, b;
double angle;
} l[maxn], tmp[maxn]; int dblcmp(double k) {
if (fabs(k) < eps) return ;
return k > ? : -;
} double multi(Point p0, Point p1, Point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
} bool cmp(int u, int v) {
int d = dblcmp(l[u].angle-l[v].angle);
if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > ;
return d < ;
} void getIntersect(Line l1, Line l2, Point& p) {
double dot1,dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
} bool judge(Line l0, Line l1, Line l2) {
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < ;
} void addLine(double x1, double y1, double x2, double y2) {
l[ln].a.x = x1; l[ln].a.y = y1;
l[ln].b.x = x2; l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
ln++;
} bool halfPlaneIntersection(Line l[], int n) {
int i, j;
for (i = ; i < n; i++) order[i] = i;
sort(order, order+n, cmp);
for (i = , j = ; i < n; i++)
if (dblcmp(l[order[i]].angle-l[order[j]].angle) > )
order[++j] = order[i];
n = j + ;
dq[] = order[];
dq[] = order[];
bot = ;
top = ;
for (i = ; i < n; i++) {
while (bot < top && judge(l[order[i]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[order[i]], l[dq[bot+]], l[dq[bot]])) bot++;
dq[++top] = order[i];
}
while (bot < top && judge(l[dq[bot]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[dq[top]], l[dq[bot+]], l[dq[bot]])) bot++;
if (bot + >= top) return false; //当dq中少于等于两条边时,说明半平面无交集
return true;
} double getDis(Point a, Point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void changePolygon(double h) { //每次将直线向里面平移距离h
double len, dx, dy;
for (int i = ; i < ln; i++) {
len = getDis(l[i].a, l[i].b);
dx = (l[i].a.y - l[i].b.y) / len * h;
dy = (l[i].b.x - l[i].a.x) / len * h;
tmp[i].a.x = l[i].a.x + dx;
tmp[i].a.y = l[i].a.y + dy;
tmp[i].b.x = l[i].b.x + dx;
tmp[i].b.y = l[i].b.y + dy;
tmp[i].angle = l[i].angle;
}
} double BSearch() {
double l = , r = , mid;
while (l + eps < r) {
mid = (l + r) / ;
changePolygon(mid);
if (halfPlaneIntersection(tmp, ln))
l = mid;
else r = mid;
}
return l;
} int main()
{
int i; while (scanf ("%d", &pn) && pn) {
for (i = ; i < pn; i++)
scanf ("%lf%lf", &p[i].x, &p[i].y);
for (i = ln = ; i < pn-; i++)
addLine(p[i].x, p[i].y, p[i+].x, p[i+].y);
addLine(p[i].x, p[i].y, p[].x, p[].y); printf ("%.6lf\n", BSearch());
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- 【POJ】【3525】Most Distant Point from the Sea
二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
随机推荐
- Jsoup获取DOM元素
(1)doc.getElementsByTag(String tagName); (2)doc.getElementById(String id); (3)doc.getElementsByClass ...
- 【转】 C语言深度解剖读书笔记(1.关键字的秘密)
本文出处:http://blog.csdn.net/mbh_1991/article/details/10149805 开始本节学习笔记之前,先说几句题外话.其实对于C语言深度解剖这本书来说,看完了有 ...
- 136、TensorFlow的Embedding lookup
import tensorflow as tf; import numpy as np; c = np.random.random([10, 1]) b = tf.nn.embedding_looku ...
- mysql之存储过程基础篇
1. 创建/使用数据库 mysql> create database me; mysql> use me; 2. 创建表 mysql> create table Stu(Sno ...
- HTML 解析类库HtmlAgilityPack
1. HtmlAgilityPack简介 网站中首先遇到的问题是爬虫和解析HTML的问题,一般情况在获取页面少量信息的情况下,我们可以使用正则来精确匹配目标.不过本身正则表达式就比较复杂,同时正则表达 ...
- 页面跳转(包括vue路由)
1.JS实现页面跳转 1.1 使用window.location的href属性跳转 window.location.href = 'http://www.baidu.com';此处window可以省略 ...
- Spring学习(三)--高级装配
一.Spring profile 在开发软件的时候,有一个很大的挑战就是将应用程序从一个环境迁 移到另外一个环境.开发阶段中,某些环境相关做法可能并不适合迁 移到生产环境中,甚至即便迁移过去也无法正常 ...
- Oh My God!e.printStackTrace() 导致系统卡崩
作者:sxgkwei 来源:http://dwz.cn/tQe4fLeDe.printStackTrace() 会导致锁死?这仅仅是打印啊,怎么可能?!先别惊呼不可能,且听我细细道来.先看截图1:注意 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- vue简单的v-for - - 路由跳转
前几天写了一个特特特简单的小图片页面,主要用到的就是v-for遍历以及路由跳转到详情页.路由跳转需要在router文件夹下index.js引入. 导航栏(element ui导航栏为模板): < ...