propositional variables (or statement variables),

letters used for propositional variables are p, q, r, s, . . . . The truth value of a proposition is true, denoted by T,

if it is a true proposition, and the truth value of a proposition is false, denoted by F, if it is a false proposition.

DEFINITION 1

Let p be a proposition. The negation of p, denoted by ¬p (also denoted by p),is the statement “It is not the case that p.”

The proposition ¬p is read “not p.”The truth value of the negation of p, ¬p, is the opposite of the truth value of p.

DEFINITION 2

Let p and q be propositions. The conjunction of p and q,denoted by p ∧ q, is the proposition “p and q.”

The conjunction p ∧ q is true when both p and q are true and is false otherwise.

DEFINITION 3

Let p and q be propositions. The disjunction of p and q,denoted by p ∨ q, is the proposition “p or q.”

The disjunction p ∨ q is false when both p and q are false and is true otherwise.

DEFINITION 5

Let p and q be propositions. The conditional statement p → q is the proposition “if p, then q.”

The conditional statement p → q is false when p is true and q is false,and true otherwise.

In the conditional statement p → q, p is called the hypothesis (orantecedent or premise)

DEFINITION 6

Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if and only if q.”

The biconditional statement p ↔ q is true when p and q have the same truth values, and is false otherwise.

Biconditional statements are also called bi-implications.

Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic的更多相关文章

  1. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers

    The statements that describe valid input are known as preconditions and the conditions that the outp ...

  2. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences

    DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...

  3. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic

    Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits

  4. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  5. Linux新手必看:浅谈如何学习linux

    本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...

  6. 新手学习Linux之快速上手分析

    一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...

  7. [转载] Linux新手必看:浅谈如何学习linux

    本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...

  8. 计算机程序设计的史诗TAOCP

    倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...

  9. Globalization Guide for Oracle Applications Release 12

    Section 1: Overview Section 2: Installing Section 3: Configuring Section 4: Maintaining Section 5: U ...

随机推荐

  1. docker命令(随时补充)

    导入导出容器:https://blog.csdn.net/LEoe_/article/details/78685156 拷贝文件到容器内:docker cp 本地路径 容器长ID:容器路径

  2. Python核心编程正则表达式练习题1-1 识别后续的字符串:“bat”、“bit”、“but”、“hat”、“hit”或者“hut”

    # 1-1 识别后续的字符串:“bat”.“bit”.“but”.“hat”.“hit”或者“hut”. import re # 正则表达式,|元字符表示选择“或” # character = 'ba ...

  3. java 基本包

    1. import java.io.BufferedInputStream;import java.io.File;import java.io.FileInputStream;import java ...

  4. jpa 自定义sql 删除方法注意点

    1.jpa自带的delete()方法可以成功删除对象 delete(id),或者delete(entity) 2.自定义删除方法注意点 参考:https://www.jianshu.com/p/9d5 ...

  5. java集合源码分析几篇文章

    java集合源码解析https://blog.csdn.net/ns_code/article/category/2362915

  6. Python 函数Ⅲ

    默认参数 调用函数时,默认参数的值如果没有传入,则被认为是默认值.下例会打印默认的age,如果age没有被传入: 以上实例输出结果: 不定长参数 你可能需要一个函数能处理比当初声明时更多的参数.这些参 ...

  7. Java 数组复制之clone方法

    一.源码 public class Test1 { public static void main(String[] args) { // Student[] arrs = new Student[] ...

  8. Android图片优化指南

    图片作为内存消耗大户,一直是开发人员尝试优化的重点对象.Bitmap的内存从3.0以前的位于native,到后来改成jvm,再到8.0又改回到native.fresco花费很多精力在5.0系统之前把B ...

  9. 从源码编译安装PCL并运行第一个小例子

    如何通过源码编译方式安装PCL 对于很多想学习PCL的同学而言,往往会被如何安装困扰很长时间.我就是这其中的一员,为了不让大家在安装问题上浪费太多时间,我决心写下这篇小小的随笔,希望对大家有所帮助. ...

  10. 满减 HRBUST - 2455

    https://vjudge.net/problem/HRBUST-2455 有两种优惠方式,一是满400减100,另外一种是商品自带折扣,二者不可叠加 dp[i][j]表示前i种商品,(参与满400 ...