[洛谷P4438] HNOI2018 道路
问题描述
W 国的交通呈一棵树的形状。W 国一共有n - 1个城市和n个乡村,其中城市从1到n - 1 编号,乡村从1到n编号,且1号城市是首都。道路都是单向的,本题中我们只考虑从乡村通往首都的道路网络。对于每一个城市,恰有一条公路和一条铁路通向这座城市。对于城市i, 通向该城市的道路(公路或铁路)的起点,要么是一个乡村,要么是一个编号比ii大的城市。 没有道路通向任何乡村。除了首都以外,从任何城市或乡村出发只有一条道路;首都没有往 外的道路。从任何乡村出发,沿着唯一往外的道路走,总可以到达首都。
W 国的国王小 W 获得了一笔资金,他决定用这笔资金来改善交通。由于资金有限,小 W 只能翻修n - 1条道路。小 W 决定对每个城市翻修恰好一条通向它的道路,即从公路和铁 路中选择一条并进行翻修。小 W 希望从乡村通向城市可以尽可能地便利,于是根据人口调 查的数据,小 W 对每个乡村制定了三个参数,编号为ii的乡村的三个参数是ai,bi和ci。假设 从编号为i的乡村走到首都一共需要经过x条未翻修的公路与y条未翻修的铁路,那么该乡村 的不便利值为
\]
在给定的翻修方案下,每个乡村的不便利值相加的和为该翻修方案的不便利值。 翻修n - 1条道路有很多方案,其中不便利值最小的方案称为最优翻修方案,小 W 自然 希望找到最优翻修方案,请你帮助他求出这个最优翻修方案的不便利值。
输入格式
第一行为正整数n。
接下来n - 1行,每行描述一个城市。其中第i行包含两个数si,ti。si表示通向第i座城市 的公路的起点,ti表示通向第i座城市的铁路的起点。如果si > 0,那么存在一条从第si座城 市通往第i座城市的公路,否则存在一条从第-si个乡村通往第i座城市的公路;ti类似地,如 果ti >,那么存在一条从第ti座城市通往第i座城市的铁路,否则存在一条从第-ti个乡村通 往第i座城市的铁路。
接下来n行,每行描述一个乡村。其中第i行包含三个数ai,bi,ci,其意义如题面所示。
输出格式
输出一行一个整数,表示最优翻修方案的不便利值。
样例输入
6
2 3
4 5
-1 -2
-3 -4
-5 -6
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
样例输出
54
解析
由题目的意思,最后构成的树有这些特征:叶节点都是乡村;每个城市只有两个儿子,且一个是公路,一个是铁路。考虑阶段为当前到了哪个点。描述一个状态则需要知道经过了多少公路,多少铁路。所以,我们设计状态如下:
设\(f[x][l][r]\)表示当前在x点,经过了l条未翻修的公路、r条未翻修的铁路的最小不方便值。考虑到正着并不好推,我们尝试着倒着推。每个点只会被两个子节点更新,且一个子节点是经过公路,一个是经过铁路。不难得到,我们有如下方程:
\]
当x为叶节点时,由题中的式子,我们可以得到如下初始状态:
\]
在dfs时,为了优化时间,我们需要记下当前最多会经过多少条没有翻修的公路和铁路。但是,这并不能解决空间的问题。可以发现,每次结束递归的点此后都不会再调用,所以我们可以每次给一个点一个编号,结束递归回收利用编号,就可以做到优化空间了。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
#define N 40002
using namespace std;
int n,i,a[N],b[N],c[N],ls[N],rs[N],f[102][42][42],dfn[N];
int read()
{
char c=getchar();
int w=0,f=1;
while(c<'0'||c>'9'){
if(c=='-') f=-1;
c=getchar();
}
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w*f;
}
void dfs(int x,int l,int r,int tim)
{
dfn[x]=tim;
if(x>=n){
for(int i=0;i<=l;i++){
for(int j=0;j<=r;j++) f[dfn[x]][i][j]=c[x]*(a[x]+i)*(b[x]+j);
}
return;
}
dfs(ls[x],l+1,r,tim+1);
dfs(rs[x],l,r+1,tim+2);
int pl=dfn[ls[x]],pr=dfn[rs[x]];
for(int i=0;i<=l;i++){
for(int j=0;j<=r;j++){
f[dfn[x]][i][j]=min(f[pl][i][j]+f[pr][i][j+1],f[pl][i+1][j]+f[pr][i][j]);
}
}
}
signed main()
{
n=read();
for(i=1;i<=n-1;i++){
ls[i]=read(),rs[i]=read();
if(ls[i]<0) ls[i]=-ls[i]+n-1;
if(rs[i]<0) rs[i]=-rs[i]+n-1;
}
for(i=n;i<=2*n-1;i++) a[i]=read(),b[i]=read(),c[i]=read();
memset(f,0x3f,sizeof(f));
dfs(1,0,0,1);
printf("%lld\n",f[1][0][0]);
return 0;
}
反思
- 没有看到路径长度小于等于40的条件,导致半天没有设计状态的思路。
- 正难则反,老是想着从上到下,没有想过可以从叶节点出发倒推得到答案。
[洛谷P4438] HNOI2018 道路的更多相关文章
- 洛谷4438 [Hnoi2018]道路 【树形dp】
题目 题目太长懒得打 题解 HNOI2018惊现普及+/提高? 由最长路径很短,设\(f[i][x][y]\)表示\(i\)号点到根有\(x\)条未修公路,\(y\)条未修铁路,子树所有乡村不便利值的 ...
- 洛谷 P5019 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp
正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...
- [NOIP2014] 提高组 洛谷P2296 寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
- NOIP2014 day2 T2 洛谷P2296 寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
- 洛谷 P2505 [HAOI2012]道路 解题报告
P2505 [HAOI2012]道路 题目描述 C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它 ...
- 洛谷P3639 [APIO2013] 道路费用 [生成树的特殊算法]
题目传送门 道路费用 格式难调,题面就不放了. 分析: 这是一道要细(yan)心(jing)的生成树的好(gui)题. 首先我们看到$k$的范围非常小,那么我们就可以直接$2^k$枚举每一条加边是否选 ...
随机推荐
- delphi 跨版本DLL调用嵌入窗体实现
delphi 能实现把别的DLL的窗体句柄查到后,贴到PANL之中,此类文章网上不少,而如果是delphi不同版本开发的DLL互调时,一些控件内部的定义有所区别,因为无法(至少目前我觉得理论上不可行) ...
- Eclipse设置保存时自动格式化代码
在使用eclipse时,经常需要使用到Ctrl+Shift+F来格式化代码,可以打开保存时格式化,会更方便. 打开方式:Window-->Preferences-->Java --> ...
- 测开之路一百四十二:ORM框架之SQLAlchemy建库、建表、数据库操作
flask-SQLAlchemy是在原生SQLAlchemy的基础之上做了一层封装,安装flask-SQLAlchemy会自动安装SQLAlchemy 安装 传统的sql建表建字段 通过flask-S ...
- js验证:密码只能为大写字母+小写字母+数字的8至15位字符组合
var reg = /^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])[a-zA-Z0-9]{8,15}$/; // alert(password); if(reg.test(pa ...
- Jmeter测试HTTP接口
一.工具说明 Jmeter是一款开源的桌面应用软件,可以用于进行接口测试和性能测试.因为该软件是开源的,所以更具扩展性.Jmeter可以对Web应用进行测试,另外还支持Java请求.Webservic ...
- 基于原生XMLHttpRequest封装
用了一段时间的Ajax,感觉有很多的不足之处,于是就封装原生了 XMLHttpRequest . 废话不多说,直接上代码. var http = function () { 'use strict'; ...
- yield(),sleep()以及wait()的区别
往往混淆了这三个函数的使用. 从操作系统的角度讲,os会维护一个ready queue(就绪的线程队列).并且在某一时刻cpu只为ready queue中位于队列头部的线程服务. 但是当前正在被服务的 ...
- TCP的三次握手过程
TCP::传输控制协议(Transmission Control Protocol ) 是一种面相连接的.可靠的.基于字节流的 传输层通信协议. TCP是一种面相连接的协议.其显著的特点就是在 ...
- 如何面对这个残酷的世界?——Java模拟
1,问题引入: 房间里有100个人,每人都有100元钱,他们在玩一个游戏.每轮游戏中,每个人都要拿出一元钱随机给另一个人,最后这100个人的财富分布是怎样的? 2,问题思考: 今天有幸看到这道题目,起 ...
- 修改jupyter notebook默认路径,亲测
anaconda环境 任务栏中找到anaconda/jupyter notebook,鼠标右键属性 点击确认即可.