POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)
题目代号:POJ 3260
题目链接:http://poj.org/problem?id=3260
The Fewest Coins
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 6715 | Accepted: 2072 |
Description
Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.
FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).
Input
Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
Line 3: N space-separated integers, respectively C1, C2, ..., CN
Output
Sample Input
3 70
5 25 50
5 2 1
Sample Output
3
Hint
题目大意:给你N种面值的钱以及买家所拥有的数量(注意:卖家的没种面值的钱是无限的),要买T价值的东西,问:要使给出的钱和收到的钱数量最小,然后求总和就是答案。
题目分析:对于买家来说,这是一个多重背包问题,对于卖家来说,这是一个完全背包问题,所以这个题是多重背包和完全背包组合而成的混合背包问题,由于背包问题都是由01背包衍生和优化出来的,所以需要对于01背包的思想完全掌握和熟练运用。然后另一个问题就是这个背包容量的上限问题,在我们生活之中如果需要买1269元的东西那么我们需要给出12张100元面值的,1张50元面值的,1张10元面值的,1张5元面值的,4张1元面值的,合计19张,那么如果按照题目中的要求我可以付款13~18张的100面值的钱,18显然比19要少,但是给了超过1300元的面值的100元都会被卖家原样找回,这很显然是没有必要的,因为在最优的答案之中找的钱不会超过100元,这个题目中也是这样,然后根据抽屉原理,多重背包容量的上限为T+max*max(max即为最大面值的钱),完全背包的上限为T+max。(别问我,我也不知道怎么来的,记住就好了,实在不会那就数组开大点。。。)
AC代码:
# include <bits/stdc++.h>
using namespace std;
# define mem(a,b) memset(a,b,sizeof(a))
# define IOS ios::sync_with_stdio(false);
# define FO(i,n,a) for(int i=n; i>=a; --i)
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define MAX 0x7fffffffffffff
# define INF 0x3f3f3f3f
# define MOD 1000000007
/// 123456789
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef unsigned long long ULL;
typedef long long LL;
///coding...................................
const int MAXM=30005;
int n,m,c[105],v[105],sum;
int b[MAXM],a[MAXM];
void complete_bag(int *dp,int vis) {
FOR(i,vis,sum)
dp[i]=min(dp[i],dp[i-vis]+1);
}
void zero_one_bag(int *dp,int vis,int cost) {
FO(i,sum,vis)
dp[i]=min(dp[i],dp[i-vis]+cost);
}
void mult_bag(int *dp,int vis,int cost) {
if(vis*cost>=sum)complete_bag(dp,vis);
else{
int cnt=1;
while(cnt<=cost){
zero_one_bag(dp,vis*cnt,cnt);
cost-=cnt;
cnt<<=1;
}
if(cost)zero_one_bag(dp,vis*cost,cost);
}
}
int main()
{
IOS
#ifdef FLAG
freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
#endif /// FLAG
while(cin>>n>>m) {
sum=0;
for(int i=0;i<n;i++)
cin>>v[i],sum=max(sum,v[i]);
for(int i=0;i<n;i++)cin>>c[i];
sum=m+sum*sum;
for(int i=1;i<=sum;i++)a[i]=b[i]=INF;
b[0]=a[0]=0;
for(int i=0;i<n;i++)complete_bag(a,v[i]);
for(int i=0;i<n;i++)mult_bag(b,v[i],c[i]);
int ans=INF;
for(int i=m;i<=sum;i++)
if(b[i]+a[i-m]<ans)
ans=b[i]+a[i-m];
if(ans==INF)puts("-1");
else cout<<ans<<endl;
}
return 0;
}
POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)的更多相关文章
- POJ 3260 The Fewest Coins 最少硬币个数(完全背包+多重背包,混合型)
题意:FJ身上有各种硬币,但是要买m元的东西,想用最少的硬币个数去买,且找回的硬币数量也是最少(老板会按照最少的量自动找钱),即掏出的硬币和收到的硬币个数最少. 思路:老板会自动找钱,且按最少的找,硬 ...
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
- poj 3260 The Fewest Coins
// 转载自http://blog.163.com/benz_/blog/static/18684203020115721917109/算法不难看出,就是一个无限背包+多重背包.问题在于背包的范围.设 ...
- POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)
Q: 既是多重背包, 还是找零问题, 怎么处理? A: 题意理解有误, 店主支付的硬币没有限制, 不占额度, 所以此题不比 1252 难多少 Description Farmer John has g ...
- POJ 3260 The Fewest Coins(背包问题)
[题目链接] http://poj.org/problem?id=3260 [题目大意] 给出你拥有的货币种类和每种的数量,商店拥有的货币数量是无限的, 问你买一个价值为m的物品,最少的货币流通数量为 ...
- codevs 3269 混合背包(复习混合背包)
传送门 [题目大意]给出物品的数量.-1为无限个. [思路]混合背包.... [code] #include<iostream> #include<cstdio> #inclu ...
- The Fewest Coins POJ - 3260
The Fewest Coins POJ - 3260 完全背包+多重背包.基本思路是先通过背包分开求出"付出"指定数量钱和"找"指定数量钱时用的硬币数量最小值 ...
- POJ3260——The Fewest Coins(多重背包+完全背包)
The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...
- POJ 3260 多重背包+完全背包
前几天刚回到家却发现家里没网线 && 路由器都被带走了,无奈之下只好铤而走险尝试蹭隔壁家的WiFi,不试不知道,一试吓一跳,用个手机软件简简单单就连上了,然后在浏览器输入192.168 ...
随机推荐
- ubuntu下搭建车场环境(代码使用jekins构建)
1.安装jdk,jre sudo apt-get update # 更新软件包管理器,如果已经执行过,则可以不用再执行 sudo apt-get install default-jdk # 安装默认的 ...
- 如何将本地的一个新项目上传到GitHub上新建的仓库中去
1:我们需要先创建一个本地的版本库(其实也就是一个文件夹).直接右击新建文件夹,或者右击打开Git bash命令行窗口通过命令mkdir来创建(mkdir 文件名). 进入这个文件夹的根目录,选中目录 ...
- css sticky footer 布局
方法一:footer 上用负的 margin-top 在内容外面需要额外包一层元素(wrap)来让它产生对应的 padding-bottom.是为了防止负 margin 导致 footer 覆盖任何实 ...
- python模块导入总结
python模块导入总结 模块导入方式 定义test.py模块 def print_func(): print("hello") import 语句 导入模块语法 import m ...
- net 网站过滤器 mvc webapi
WebApi过滤器1 public class TestController : ApiController { /// <summary> /// 获取用户信息 /// </sum ...
- MyCAT与MySQL导入、导出文件
1. MySQL批量导入-LOAD DATA使用本地客户端连接MySQL数据库,批量导入数据,出现报错:2017-06-07 09:30:45,936 MySqlWrapper::ImportCSVt ...
- GDAL联合OpenCV进行图像处理
作为一名图像处理方面的工程师,在面对大数据量的遥感影像时,往往会利用到强大的GDAL库,但是GDAL库却没有方面的算法函数进一步进行处理:同时我们看到Opencv库能提供强大的算法支持,却对大数据影像 ...
- icmp, IPPROTO_ICMP - Linux IPv4 ICMP 核心模块.
DESCRIPTION 描述 本网络核心协议模块实现了基于 RFC792 协议中定义的<互联网控制报文协议>.它针对网络主机间通讯出错的情况作出回应并给出诊断信息.用户不能直接使用本模块. ...
- Linux--操作系统基础及基础命令--01
一.系统基础 1.三大部件: CPU:运算器.控制器.存储器 内存:CPU的数据只能从内存中读取,且内存数据是易失性的(页面) IO: 控制总线.数据总线 2.OS的管理 GUI:图形用户界面 GNO ...
- PAT Basic 1081 检查密码 (15 分)
本题要求你帮助某网站的用户注册模块写一个密码合法性检查的小功能.该网站要求用户设置的密码必须由不少于6个字符组成,并且只能有英文字母.数字和小数点 .,还必须既有字母也有数字. 输入格式: 输入第一行 ...