//bzoj上的题面太丑了,导致VJ的题面也很丑,于是这题用洛谷的题面

题面描述

XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假。 XOR 运算的真值表如下(\(1\) 表示真, \(0\) 表示假):

而两个非负整数的 XOR 是指将它们表示成二进制数,再在对应的二进制位进行 XOR 运算。

譬如 \(12\) XOR \(9\) 的计算过程如下:

故 \(12\) XOR \(9\) = 5$。

容易验证, XOR 运算满足交换律与结合律,故计算若干个数的 XOR 时,不同的计算顺序不会对运算结果造成影响。从而,可以定义 \(K\) 个非负整数 \(A_1,A_2,……,A_{K-1},A_K\)的 XOR 和为

\(A_1\) XOR \(A_2\) XOR …… XOR \(A_{K-1}\) XOR \(A_K\)

考虑一个边权为非负整数的无向连通图,节点编号为 \(1\) 到 \(N\),试求出一条从 \(1\) 号节点到 \(N\) 号节点的路径,使得路径上经过的边的权值的 XOR 和最大。

路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数,具体见样例。

输入格式

输入文件 xor.in 的第一行包含两个整数 \(N\) 和 \(M\), 表示该无向图中点的数目与边的数目。

接下来 \(M\) 行描述 \(M\) 条边,每行三个整数 \(S_i\), \(T_i\) , \(D_i\), 表示 \(S_i\) 与 \(T_i\) 之间存在一条权值为 \(D_i\) 的无向边。

图中可能有重边或自环。

输出格式

输出文件 xor.out 仅包含一个整数,表示最大的 XOR 和(十进制结果)。

输入输出样例

输入 #1

 5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

输出 #1

6

说明/提示

【样例说明】

如图,路径\(1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 5\)对应的XOR和为

\(2\) XOR \(1\) XOR \(2\) XOR \(4\) XOR \(1\) XOR \(1\) XOR \(3 = 6\)

当然,一条边数更少的路径\(1 \rightarrow 3 \rightarrow 5\)对应的XOR和也是\(2\) XOR \(4 = 6\)。

【数据规模】

对于 \(20 \%\) 的数据,\(N \leq 100,M \leq 1000,D_i \leq 10^{4}\);

对于 \(50 \%\) 的数据,\(N \leq 1000,M \leq 10000,D_i \leq 10^{18}\);

对于 \(70 \%\) 的数据,\(N \leq 5000,M \leq 50000,D_i \leq 10^{18}\);

对于 \(100 \%\) 的数据,\(N \leq 50000\), \(M \leq 100000\),\(D_i \leq 10^{18}\)。

解题思路

看了题解可知,这题先dfs一遍图,随便找一条从起点到终点的路,求出路上的异或值,同时把所有搜索到的环的异或值全部加入线性基,然后把那条路上的异或值放到线性基里,找能够异或到的最大值,然后就是答案。敷衍

这题的思想有点像我这学期高数刚学的格林公式,不知道的就别管这个词了。我们从那条路起点\(1\)出发,到达路中间的一个点\(x\),然后离开这条路,通过某一段 \(x \rightarrow y\) 走到某个环上的一个点\(y\),然后从点\(y\)开始绕环一周,回到点\(y\),再从点\(y\)通过刚才那段\(y \rightarrow x\) 回到点\(x\),再接着走完那条路剩下的部分\(x\rightarrow n\)。由“异或两次同一个数相当于没有异或”的性质可以知道,\(x\rightarrow y\)和\(y\rightarrow x\)就互相抵消了,于是答案就是\(1\rightarrow n\)的异或值再异或上那个环的异或值。再多走几个环,就再多异或几个环就好。

那么为什么最开始随便选一条路就好呢?是这样:假设存在两条路可以从\(1\)到\(n\),那么因为是无向图,这两条路就成了一个环,我们dfs过程中就会把这个环加入线性基。走了其中一条路,再走这个环,就相当于走了另一条路。

源代码

#include<stdio.h>

const int MAXN=5e5+5,MAXM=4e5+5;
typedef long long ull;
int n,m; struct Edge{
int nxt,to;
ull w;
}e[MAXM<<1];
int cnt=1,head[MAXN];
inline void add(int u,int v,ull w)
{
e[cnt]={head[u],v,w};
head[u]=cnt++;
e[cnt]={head[v],u,w};
head[v]=cnt++;
} ull b[64]={0};//线性基
inline void addb(ull a)
{
for(int i=62;~i;i--)
{
if(a>>i)
{
if(b[i]) a^=b[i];
else
{
b[i]=a;
return;
}
}
}
}
inline ull mx(ull ans)
{
for(int i=62;~i;i--)
if((ans^b[i])>ans) ans^=b[i];
return ans;
}
bool vis[MAXN];
ull dis[MAXN];//从1搜过来的值
void dfs(int u)
{
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt)
{
int v=e[i].to;
if(vis[v])
addb(dis[v]^dis[u]^e[i].w);
else
{
dis[v]=dis[u]^e[i].w;
dfs(v);
}
}
}
int main()
{
//freopen("test.in","r",stdin);
scanf("%d%d",&n,&m);
while(m--)
{
int u,v;
ull w;
scanf("%d%d%lld",&u,&v,&w);
add(u,v,w);
}
dfs(1);
printf("%lld\n",mx(dis[n]));
return 0;
}

洛谷 P4151 BZOJ 2115 [WC2011]最大XOR和路径的更多相关文章

  1. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  2. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

  3. [WC2011]最大XOR和路径(线性基)

    P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...

  4. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  5. 题解-[WC2011]最大XOR和路径

    [WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...

  6. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  7. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  8. BZOJ 2115: [Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Stat ...

  9. BZOJ 2115: [Wc2011] Xor DFS + 线性基

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...

随机推荐

  1. P4411&&BZOJ1978 [BJWC2010]取数游戏(动态规划dp)

    P4411 一道dp f[i]表示一定选第i个数的条件下前i个数所能得到的最优值 last[i]表示质因数i在数列a中最后出现时的下标 状态转移方程为\(f[i]=max\{f[last[j]\:|\ ...

  2. Connection is read-only. Queries leading to data modification are not allowed 错误原因

    因为我再spring 中使用了AOP进行事务管理,有如下配置 <tx:advice id="txAdvice" transaction-manager="trans ...

  3. 小记---------手动执行脚本正常执行,使用crontab定时执行时 不执行

    可能出现的原因就是因为crontab不会从用户的/etc/profile文件中读取环境变量,所以就出现 使用定时crontab执行时 无法执行 抛错 所以在使用crontab 定时执行脚本时  在脚本 ...

  4. linux中/etc/profile 和 ~/.bash_profile 的区别

    在 linux中设置环境变量一般使用bash_profile进行配置 其中/etc/bash_profile 表示系统整体设置 ,生效后系统内所有用户可用而 ~/.bash_profile 只表示当前 ...

  5. 洛谷P1600 天天爱跑步——题解

    题目传送 首先要考虑入手点.先考虑一个一个玩家处理,显然不加优化的话,时间复杂度是O(n)的.发现对于玩家路径上的点都有一个观察员,一个都不能忽视,看起来是很难优化了.在做题时,发现一个思路很难想,就 ...

  6. C语言--浮点数

    在程序中使用浮点数 -- 浮点数的精确性有限 -- 在从c语言中float类型的精确度只到小数点的7位 -- 浮点数只能在一定范围内去相信它 -- 在有精确度高的要求下不要使用浮点数(在算钱的时候,误 ...

  7. python爬虫常用第三方库

    这个列表包含与网页抓取和数据处理的Python库 网络 通用 urllib -网络库(stdlib). requests -网络库. grab – 网络库(基于pycurl). pycurl – 网络 ...

  8. 常见SMT极性元器件识别方法

    极性元件在整个PCBA加工过程中需要特别注意,因为方向性的元件错误会导致批量性事故和整块PCBA板的失效,因此工程及生产人员了解SMT极性元件极为重要. 1.片式电阻(Resistor)无极性 2.电 ...

  9. RocketMQ 源码分析 —— Message 发送与接收

    1.概述 Producer 发送消息.主要是同步发送消息源码,涉及到 异步/Oneway发送消息,事务消息会跳过. Broker 接收消息.(存储消息在<RocketMQ 源码分析 —— Mes ...

  10. Solaris下truss的使用

    Solaris下truss的使用 原文转载:http://blog.csdn.net/sunlin5000/article/details/6560736 在Solaris下面,如果需要跟踪系统的调用 ...