L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE)

L2范数损失函数,也被称为最小平方误差(LSE)

L2损失函数 L1损失函数
不是非常的鲁棒(robust) 鲁棒
稳定解 不稳定解
总是一个解 可能多个解

鲁棒性

最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值。如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择。

L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整模型来最小化误差。如果这个样本是一个异常值,模型就需要调整以适应单个的异常值,这会牺牲许多其它正常的样本,因为这些正常样本的误差比这单个的异常值的误差小。

稳定性

最小绝对值偏差方法的不稳定性意味着,对于数据集的一个小的水平方向的波动,回归线也许会跳跃很大。

相反地,最小平方法的解是稳定的,因为对于一个数据点的任何微小波动,回归线总是只会发生轻微移动

总结

MSE对误差取了平方,如果存在异常值,那么这个MSE就很大。

MAE更新的梯度始终相同,即使对于很小的值,梯度也很大,可以使用变化的学习率。MSE就好很多,使用固定的学习率也能有效收敛。

总而言之,处理异常点时,L1损失函数更稳定,但它的导数不连续,因此求解效率较低。L2损失函数对异常点更敏感,但通过令其导数为0,可以得到更稳定的封闭解。

Huber

l1和l2都存在的问题:

若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。

那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150,因为模型会按中位数来预测;

MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。

这些情况下最简单的办法是对目标变量进行变换。而另一种办法则是换一个损失函数,这就引出了下面要讲的第三种损失函数,即Huber损失函数。

Huber损失,平滑的平均绝对误差

Huber损失对数据中的异常点没有平方误差损失那么敏感。

本质上,Huber损失是绝对误差,只是在误差很小时,就变为平方误差。误差降到多小时变为二次误差由超参数δ(delta)来控制。当Huber损失在[0-δ,0+δ]之间时,等价为MSE,而在[-∞,δ]和[δ,+∞]时为MAE。

Huber损失结合了MSE和MAE的优点,对异常点更加鲁棒。

L1、L2损失函数、Huber损失函数的更多相关文章

  1. 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss

    回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明: ...

  2. 机器学习之正则化【L1 & L2】

    前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...

  3. 正则化 L1 L2

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...

  4. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  5. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  6. L0/L1/L2范数的联系与区别

    L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...

  7. 机器学习 - 正则化L1 L2

    L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...

  8. 阅读ARM Memory(L1/L2/MMU)笔记

    <ARM Architecture Reference Manual ARMv8-A>里面有Memory层级框架图,从中可以看出L1.L2.DRAM.Disk.MMU之间的关系,以及他们在 ...

  9. L1&L2 Regularization的原理

    L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现 ...

随机推荐

  1. 使用C#登录带验证码的网站

    我在上一篇文章中已经讲解了一般网站的登录原来和C#的登录实现,很多人问到对于使用了验证码的网站该怎么办,这里我就讲讲验证码的原理和对应的登录方法.验证码的由来几年前,大部分网站.论坛之类的是没有验证码 ...

  2. js策略模式vs状态模式

    一.策略模式 1.定义:把一些小的算法,封装起来,使他们之间可以相互替换(把代码的实现和使用分离开来)2.利用策略模式实现小方块缓动 html代码: <div id="containe ...

  3. appium desktop 定位弹出框时报错

    今天在定位真机APP的时候,弹出框的内容死活定位不到,只能定位到背景的内容. 问题:appium desktop 定位弹出框时报错,定位不到,只能定位到背景的内容. 分析: 定位工具找不到弹出框的元素 ...

  4. Hibernate注解详解(超全面不解释)

    原博客地址:http://blog.csdn.net/sufei58/article/details/48223731 我只是收藏来方便自己查阅的,希望博主不要介意 一.实体Bean 每个持久化POJ ...

  5. flask实现异步任务

    最近在开发同步mysql数据到redis的接口,因为数据同步涉及各种增删查改,如果用同步实现,可能回造成连接超时.堵塞,所以,使用python实现异步任务. 代码实现from flask import ...

  6. 重温《javascript高级程序设计》(第3版)

    1.重温<JavaScript高级程序设计>(第3版) (一)重温<javascript高级程序设计>(第1-4章) (二)重温<JavaScript高级程序设计> ...

  7. 2644. 数列 (Standard IO)

    这道题是道数论题,如果想对了的话会很快. 因为这道题实在是没有什么知识点,所以我直接上代码,代码上有很详细的注释: #include<iostream> #include<cstdi ...

  8. python读取mysql返回json

    python内部是以tuple格式存储的关系型数据库的查询结果,在实际的使用过程中可能需要转换成list或者dict,json等格式.在这里讲解如何将查询的结果转成json字符串.这里需要导入nump ...

  9. 初识redis基础

    一.redis 的五大数据类型: 1.String(字符串): 2.List(列表): 3.Set(集合): 4.Hash(哈希,类似于Java里的Map); 5.Zset(sorted set:有序 ...

  10. struct和class的相同点与不同点

    struct是c语言中常用来定义结构体时使用的 class是c++中用来定义类时所使用的 相同 struct(结构体)和class(类)内均可有不同个数.不同类型的数据 定义时 都必须在前面加上str ...