L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE)

L2范数损失函数,也被称为最小平方误差(LSE)

L2损失函数 L1损失函数
不是非常的鲁棒(robust) 鲁棒
稳定解 不稳定解
总是一个解 可能多个解

鲁棒性

最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值。如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择。

L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整模型来最小化误差。如果这个样本是一个异常值,模型就需要调整以适应单个的异常值,这会牺牲许多其它正常的样本,因为这些正常样本的误差比这单个的异常值的误差小。

稳定性

最小绝对值偏差方法的不稳定性意味着,对于数据集的一个小的水平方向的波动,回归线也许会跳跃很大。

相反地,最小平方法的解是稳定的,因为对于一个数据点的任何微小波动,回归线总是只会发生轻微移动

总结

MSE对误差取了平方,如果存在异常值,那么这个MSE就很大。

MAE更新的梯度始终相同,即使对于很小的值,梯度也很大,可以使用变化的学习率。MSE就好很多,使用固定的学习率也能有效收敛。

总而言之,处理异常点时,L1损失函数更稳定,但它的导数不连续,因此求解效率较低。L2损失函数对异常点更敏感,但通过令其导数为0,可以得到更稳定的封闭解。

Huber

l1和l2都存在的问题:

若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。

那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150,因为模型会按中位数来预测;

MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。

这些情况下最简单的办法是对目标变量进行变换。而另一种办法则是换一个损失函数,这就引出了下面要讲的第三种损失函数,即Huber损失函数。

Huber损失,平滑的平均绝对误差

Huber损失对数据中的异常点没有平方误差损失那么敏感。

本质上,Huber损失是绝对误差,只是在误差很小时,就变为平方误差。误差降到多小时变为二次误差由超参数δ(delta)来控制。当Huber损失在[0-δ,0+δ]之间时,等价为MSE,而在[-∞,δ]和[δ,+∞]时为MAE。

Huber损失结合了MSE和MAE的优点,对异常点更加鲁棒。

L1、L2损失函数、Huber损失函数的更多相关文章

  1. 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss

    回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明: ...

  2. 机器学习之正则化【L1 & L2】

    前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...

  3. 正则化 L1 L2

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...

  4. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  5. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  6. L0/L1/L2范数的联系与区别

    L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...

  7. 机器学习 - 正则化L1 L2

    L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...

  8. 阅读ARM Memory(L1/L2/MMU)笔记

    <ARM Architecture Reference Manual ARMv8-A>里面有Memory层级框架图,从中可以看出L1.L2.DRAM.Disk.MMU之间的关系,以及他们在 ...

  9. L1&L2 Regularization的原理

    L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现 ...

随机推荐

  1. jsp的课设1

    记这个为了巩固整个网站的开发流程,java开发太昂贵基本上很少有公司用,不知道学校怎么想的用这个.基本流程适用于任何后台的开发. JDK的安装不提了,Tomcat和Mysql都是用的最新版的,由于是w ...

  2. MySQL操作数据库值mysql事务

    创建一个无参数的事务     注意要写START TRANSACTION或者是Begin;Mysql会默认直接执行一个单元 MYSQL默认是自动提交的,也就是你提交一个QUERY,它就直接执行!我们可 ...

  3. php面试专题---2、常量及数据类型考点

    php面试专题---2.常量及数据类型考点 一.总结 一句话总结: 变量为null和变量判断为false的情况需要仔细注意下 1.PHP中字符串可以使用哪三种定义方法以及各自的区别是什么? 单引号:不 ...

  4. MVC路由解析---IgnoreRoute

    MVC路由解析---IgnoreRoute   文章引导 MVC路由解析---IgnoreRoute MVC路由解析---MapRoute MVC路由解析---UrlRoutingModule Are ...

  5. Python 与 C 对比

    到目前为止,我接触最多两种语言应该就是python 和 C 语言了. 个人理解 1. 执行速度不同, python为解释性语言,C是编译型语言(需要编译器) 2. python 是基于C的实现,C中很 ...

  6. CSS实现文字阴影的效果

    CSS中有两种阴影效果,一种是DropShadow(投影),另一种是Shadow(阴影).1.DropShadow语法:{FILTER:DropShadow(Color=color,OffX=offX ...

  7. centosifcfg-eth0文件内容为空

    虚拟机安装好CentOS 6系统后,发现ip在每次重启后都会还原,用ifconfig查看是有eth0网卡的(也有可能只有回环网卡lo),于是查看eth0网卡配置文件,发现在 /etc/sysconfi ...

  8. Python中单下划线和双下划线

    1.双下划线开头和结尾 Python中存在一些特殊的方法,有些方法以双下划线 “__” 开头和结尾,它们是Python的魔法函数,比如__init__()和__str__等等.不用要这种方式命名自己的 ...

  9. centos 7.2 离线安装 gcc

    1.查看有没有挂载 centos 7.2 的镜像源文件 2.如果没有就通过服务端挂载 如果不知怎么挂载,就解压CentOS-7-x86_64-DVD-1511.iso 镜像文件,在Packages找到 ...

  10. 64.二叉搜索树的第K个节点

    题目描述:   给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 思路分析:   根据二叉搜索树的特殊性,我们中序遍历它 ...