L1、L2损失函数、Huber损失函数
L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE)
L2范数损失函数,也被称为最小平方误差(LSE)
L2损失函数 | L1损失函数 |
---|---|
不是非常的鲁棒(robust) | 鲁棒 |
稳定解 | 不稳定解 |
总是一个解 | 可能多个解 |
鲁棒性
最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值。如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择。
L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整模型来最小化误差。如果这个样本是一个异常值,模型就需要调整以适应单个的异常值,这会牺牲许多其它正常的样本,因为这些正常样本的误差比这单个的异常值的误差小。
稳定性
最小绝对值偏差方法的不稳定性意味着,对于数据集的一个小的水平方向的波动,回归线也许会跳跃很大。
相反地,最小平方法的解是稳定的,因为对于一个数据点的任何微小波动,回归线总是只会发生轻微移动
总结
MSE对误差取了平方,如果存在异常值,那么这个MSE就很大。
MAE更新的梯度始终相同,即使对于很小的值,梯度也很大,可以使用变化的学习率。MSE就好很多,使用固定的学习率也能有效收敛。
总而言之,处理异常点时,L1损失函数更稳定,但它的导数不连续,因此求解效率较低。L2损失函数对异常点更敏感,但通过令其导数为0,可以得到更稳定的封闭解。
Huber
l1和l2都存在的问题:
若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。
那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150,因为模型会按中位数来预测;
MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。
这些情况下最简单的办法是对目标变量进行变换。而另一种办法则是换一个损失函数,这就引出了下面要讲的第三种损失函数,即Huber损失函数。
Huber损失,平滑的平均绝对误差
Huber损失对数据中的异常点没有平方误差损失那么敏感。
本质上,Huber损失是绝对误差,只是在误差很小时,就变为平方误差。误差降到多小时变为二次误差由超参数δ(delta)来控制。当Huber损失在[0-δ,0+δ]之间时,等价为MSE,而在[-∞,δ]和[δ,+∞]时为MAE。
Huber损失结合了MSE和MAE的优点,对异常点更加鲁棒。
L1、L2损失函数、Huber损失函数的更多相关文章
- 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记 版权声明: ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- 正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- L0/L1/L2范数的联系与区别
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...
- 机器学习 - 正则化L1 L2
L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...
- 阅读ARM Memory(L1/L2/MMU)笔记
<ARM Architecture Reference Manual ARMv8-A>里面有Memory层级框架图,从中可以看出L1.L2.DRAM.Disk.MMU之间的关系,以及他们在 ...
- L1&L2 Regularization的原理
L1&L2 Regularization 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现 ...
随机推荐
- php chr()函数 语法
php chr()函数 语法 作用:从指定的 ASCII 值返回字符.直线电机选型 语法:chr(ascii) 参数: 参数 描述 ascii 必须,指定ASCII值 说明:chr() 函数从指定的 ...
- PCB六层板学习(一)
一.原理图的网表导出及版本转换 安装Cadence后,打开RK3288的原理图. 首先点击rk3288-mid.dsn >> 然后有一个Create netlist的图标(当然咋Tools ...
- 【BZOJ3522&BZOJ4543】Hotel加强版(长链剖分,树形DP)
题意:求一颗树上三点距离两两相等的三元组对数 n<=1e5 思路:From https://blog.bill.moe/bzoj4543-hotel/ f[i][j]表示以i为根的子树中距离i为 ...
- LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...
- python中常用内置函数用法总结
强制类型转换:int()float()str()list()tuple()set()dict()总结,这几种类型转换函数得用法基本一致,基本就是int(要转换得数据).返回值类型为对应得数据类型 ...
- python中将12345转换为'12345',不要使用str
a = 12345 #创建一个空字符串 ret = "" #whlie循环,条件为当a为true时,即a不是 0的时候 while a : #定义一个变量,对a求余 last = ...
- Microsoft Office Excel
解除合并,并复制原始值到每一个解除合并后的单元格 对齐方式 -> 合并后居中 -> 取消单元格合并 编辑 -> 查找和选择 -> 定位条件 -> 空值 输入=然后按↑选择 ...
- Oracle下定时删除归档日志脚本
一.报错信息 前几天网站突然访问不了,并且报了如下错误: ora-27101: shared memory realm does not exist ora-01034: oracle not ava ...
- python分类预测模型的特点
python分类预测模型的特点 模型 模型特点 位于 SVM 强大的模型,可以用来回归,预测,分类等,而根据选取不同的和函数,模型可以是线性的/非线性的 sklearn.svm 决策树 基于" ...
- 刚安装的程序要卸载,如何Ubuntu查看程序安装记录
如果新装一个程序,突然发现需要卸载,又忘记了程序名字,怎么解决呢? /var/log/apt/history.log /var/log/apt/term.log /var/log/aptitude 看 ...