[CSP-S模拟测试]:简单的操作(二分图+图的直径)
题目描述
从前有个包含$n$个点,$m$条边,无自环和重边的无向图。
对于两个没有直接连边的点$u,v$,你可以将它们合并。具体来说,你可以删除$u,v$及所有以它们作为端点的边,然后加入一个新点$x$,将它与所有在原图中与u或v有直接连边的点连边。
你需要判断是否能通过若干次合并操作使得原图成为一条链,如果能,你还需要求出这条链的最大长度。
输入格式
从文件$merge.in$中读入数据。
第一行两个正整数$n,m$,表示图的点数和边数。
接下来m行,每行两个正整数$u,v$,表示$u$和$v$之间有一条无向边。
输出格式
输出到文件$merge.out$中。
如果能通过若干次合并操作使得原图成为一条链,输出链的最大长度,否则输出$-1$。
样例
样例输入1:
5 4
1 2
2 3
3 4
3 5
样例输出1:
3
样例输入2:
4 6
1 2
2 3
1 3
3 4
2 4
1 4
样例输出2:
-1
数据范围与提示
对于$30\%$的数据,$n<10$
对于$70\%$的数据,$n<2,000$
对于$100\%$的数据,$n\leqslant 1,000,m\leqslant 10^5$
题解
画画图便会发现,如果出现奇环则一定无解;最长链即为图的直径,答案就是每一个联通块直径和。
二分图染色即可,再求图的直径就好了。
时间复杂度:$\Theta(n^2)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int n,m;
struct rec{int nxt,to;}e[200001];
int head[1001],cnt,tot;
int col[1001],bel[1001],len[1001];
int dis[1001];
bool vis[1001];
int ans;
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>>q;
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfs(int x,int c,int p)
{
col[x]=c;bel[x]=p;
for(int i=head[x];i;i=e[i].nxt)
{
if(!col[e[i].to])dfs(e[i].to,-c,p);
if(col[x]==col[e[i].to]){puts("-1");exit(0);}
}
}
int Dij(int x)
{
int res=0;
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[x]=0;
q.push(make_pair(0,x));
while(!q.empty())
{
int flag=q.top().second;
q.pop();
if(vis[flag])continue;
vis[flag]=1;
res=max(res,dis[flag]);
for(int i=head[flag];i;i=e[i].nxt)
if(dis[e[i].to]>dis[flag]+1)
{
dis[e[i].to]=dis[flag]+1;
q.push(make_pair(dis[e[i].to],e[i].to));
}
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
for(int i=1;i<=n;i++)
if(!col[i])dfs(i,1,++tot);
for(int i=1;i<=n;i++)
len[bel[i]]=max(len[bel[i]],Dij(i));
for(int i=1;i<=tot;i++)
ans+=len[i];
printf("%d",ans);
return 0;
}
rp++
[CSP-S模拟测试]:简单的操作(二分图+图的直径)的更多相关文章
- [CSP-S模拟测试]:简单的括号序列(组合数)
题目传送门(内部题82) 输入格式 一行一个字符串$ss$,保证$ss$中只包含$'('$和$')'$. 输出格式 一行一个整数,表示满足要求的子序列数对$10^9+7$的结果. 样例 样例输入1: ...
- [CSP-S模拟测试]:简单的期望(DP)
题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$ ...
- [CSP-S模拟测试]:简单计算(数学)
题目传送门(内部题104) 输入格式 第一行一个正整数$T$,表示该测试点内的数据组数,你需要对该测试点内的$T$组数据都分别给出正确的答案才能获得该测试点的分数. 接下来$T$组数据,每组数据一行两 ...
- [CSP-S模拟测试]:简单的序列(DP)
题目描述 从前有个括号序列$s$,满足$|s|=m$.你需要统计括号序列对$(p,q)$的数量. 其中$(p,q)$满足$|p|+|s|+|q|=n$,且$p+s+q$是一个合法的括号序列. 输入格式 ...
- [CSP-S模拟测试]:简单的填数(贪心+模拟)
题目描述 对于一个长度为$n$,且下标从$1$开始编号的序列$a$,我们定义它是「合法的」,当且仅当它满足以下条件:·$a_1=1$·对于$i\in [1,n),a_i\leqslant a_{i+1 ...
- [CSP-S模拟测试]:简单的玄学(数学)
题目描述 有$m$个在$[0,2^n)$内均匀随机取值的整型变量,球至少有两个变量取值相同的概率.为了避免精度误差,假设你的答案可以表示成$\frac{a}{b}$的形式,(其中$(a,b)=1$), ...
- [CSP-S模拟测试]:简单的区间(分治)
题目描述 给定一个长度为$n$的序列$a$以及常数$k$,序列从$1$开始编号.记$$f(l,t)=\sum \limits_{i=l}^ra_i-\max \limits_{i=l}^r\{a_i\ ...
- csps模拟测试7273简单的操作小P的2048小P的单调数列小P的生成树
题面:https://www.cnblogs.com/Juve/articles/11678564.html 简单的操作: 考场上sb了,没看出来 如果有奇环一定不能缩成一条链,判掉奇环后就是bfs最 ...
- 模拟测试—moq:简单一两句
在Xunit的基础上,说话模拟测试. 假如我们有这样一个控制器里面有这样一个方法,如图 我们在对Bar测试得时候,如果测试未通过,错误有可能来至于Bar,也有可能错误来至于serverde Foo方法 ...
随机推荐
- linux 扩展正则表达式 egrep
使用命令为grep -E 及egrep [root@MongoDB ~]# cat mike.log I am mike! I like linux. I like play football, te ...
- linux 正则表达式 元字符
\b 单词边界 \bcool\b 只匹配cool字符串 [root@MongoDB ~]# cat test.txt i am mike1 i am mike i am mike12 匹配有mike ...
- Tomcat进程、SFTP服务器
查看Tomcat是否以关闭 ps -ef|grep tomcat port sftp -oPort=60001 root@192.168.0.254
- 用adb logcat抓取log
实时打印的主要有:logcat main,logcat radio,logcat events,tcpdump,还有高通平台的还会有QXDM日志 状态信息的有:adb shell dmesg, ...
- P2010回文日期
这道题是2016年普及组的题,难度等级为普及-. 这道题仍然是个模拟题.有两种策略:1.枚举回文,看日期是否存在2.枚举日期,看是否是回文.显然,前者要快很多,并且准确.本蒟蒻第一次便使用了后者,bu ...
- c语言中不允许在函数外部给全局变量赋值
今天,在写条件编译的时候,出现了在函数外部给全局变量赋值的情况,gcc报错,那么c语言为什么不允许在函数外部给变量赋值呢?为什么声明变量的时候可以对变量进行赋值? 出错代码: /* 2 * ===== ...
- 哈希hash
定义 是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值 生成方法 hash() 哈希特性 不可逆 :在具备编码功能的同时,哈希算法也作为一种加密算 ...
- 使用Docker部署Spring-Boot+Vue博客系统
在今年年初的时候,完成了自己的个Fame博客系统的实现,当时也做了一篇博文Spring-boot+Vue = Fame 写blog的一次小结作为记录和介绍.从完成实现到现在,也断断续续的根据实际的使用 ...
- JSP中九大内置对象及其作用
jsp中有九大内置对象分别为:request,response,session,application,out,pageContext,page,config,exception. request:请 ...
- 基于Red5与ffmpeg实现rtmp处理NVR或摄像头的监控视频处理方案
背景 各大监控视频平台厂商与外对接均是基于IE的OCX插件方式提供实时视频查看.历史视频回放与历史视频下载.在h5已大行其道的当下,基于IE的OCX插件方式已满足不了广大客户的实际需求,因此需要一个兼 ...