prufer数列,可以用来解一些关于无根树计数的问题。

prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码。

(1)无根树转化为prufer序列。

首先定义无根树中度数为1的节点是叶子节点。

找到编号最小的叶子并删除,序列中添加与之相连的节点编号,重复执行直到只剩下2个节点。

如下图的树对应的prufer序列就是3,5,1,3。

具体实现可以用一个set搞定,维护度数为1的节点。复杂度O(nlogn)。

(2)prufer序列转化为无根树。

设点集V={1,2,3,...,n},每次取出prufer序列中最前面的元素u,在V中找到编号最小的没有在prufer序列中出现的元素v,给u,v连边然后分别删除,最后在V中剩下两个节点,给它们连边。最终得到的就是无根树。

具体实现也可以用一个set,维护prufer序列中没有出现的编号。复杂度O(nlogn)。

最后有一个很重要的性质就是prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1。

一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。

上面这句话比较重要。通过上面的定理,

1)我们可以直接推出n个点的无向完全图的生成树的计数:n^(n-2)   即n个点的有标号无根树的计数。

2)一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有   (n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ]  个,因为此时Prüfer编码中的数字i恰好出现Di-1次。

即 n种元素,共n-2个,其中第i种元素有Di-1个,求排列数。

3)n个节点的度依次为D1, D2, …, Dn,令有m个节点度数未知,求有多少种生成树?(BZOJ1005 明明的烦恼)

令每个已知度数的节点的度数为di,有n个节点,m个节点未知度数,left=(n-2)-(d1-1)-(d2-1)-...-(dk-1)

已知度数的节点可能的组合方式如下

(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left!

剩余left个位置由未知度数的节点随意填补,方案数为m^left

于是最后有

ans=(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left! * m^left

「prufer」的更多相关文章

  1. 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序

    [题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...

  2. 「BZOJ1005」[HNOI2008] 明明的烦恼

    「BZOJ1005」[HNOI2008] 明明的烦恼 先放几个prufer序列的结论: Prufer序列是一种对有标号无根树的编码,长度为节点数-2. 具体存在无根树转化为prufer序列和prufe ...

  3. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  4. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  5. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  6. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  7. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. 「2014-3-18」multi-pattern string match using aho-corasick

    我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...

随机推荐

  1. WPF prism 类、属性和方法的导入和导出

    学习Prism一定要掌握依赖注入的应用,只有了解了Prism的依赖注入才能更好的使用Prism提升应用开发的架构. 首先说明Prism依赖注入有两种方式及MEF和Unity ,在Prism中是两个没有 ...

  2. aria-hidden读屏

    图标的可访问性现代的辅助技术能够识别并朗读由 CSS 生成的内容和特定的 Unicode 字符.为了避免 屏幕识读设备抓取非故意的和可能产生混淆的输出内容(尤其是当图标纯粹作为装饰用途时),我们为这些 ...

  3. 阶段3 2.Spring_07.银行转账案例_1 今日课程内容介绍

    1.完善我们的account案例 2.分析案例中问题 3.回顾之前讲过的一个技术:动态代理 4.动态代理另一种实现方式 5.解决案例中的问题 6.AOP的概念 7.spring中的AOP相关术语 8. ...

  4. Python 的列表生成器

    列表生成器为创建列表提供了一种简洁的方式. 比如说,我们可以这样实现一个平方数列表 squares=[x**2 for x in range(10)] 或者这样迭代一个字符串来生成列表 >> ...

  5. jeecg bpm流程节点流程节点配置

    流程节点 流程节点 cgFormBuildController.do?ftlForm&tableName=jform_leave&mode=onbutton&ftlVersio ...

  6. Linux字符界面字符颜色显示

    一.字符颜色 #!/bin/bash #字符颜色显示 #-e:允许echo使用转义 #\033[:开始位 #\033[0m:结束位 #\033等同于\e echo -e "\033[30m黑 ...

  7. 利用python求非线性方程

    最近在做的东西中有一件任务,相当于一个函数已知y来求x,网上找了各种办法最终得以实现.在此说明方法,并记录一些坑. 要求的函数比如:log(x) - log(1-x) + 2.2 * (1 -2x) ...

  8. 【VS开发】windows注册ActiveX控件

    ActiveX控件是一个动态链接库,是作为基于COM服务器进行操作的,并且可以嵌入在包容器宿主应用程序中,ActiveX控件的前身就是OLE控件.由于ActiveX控件与开发平台无关,因此,在一种编程 ...

  9. flaskurl传参用法

    from flask import Flask,request app = Flask(__name__) @app.route("/") def index(): return ...

  10. spring boot-10.国际化

    1.在原来spring MVC 中国际化实现步骤 (1)编写国际化配置文件 (2)使用ResourceBundleMessageSource管理国际化资源文件 (3)在页面中取国际化信息 2.spri ...