「prufer」
prufer数列,可以用来解一些关于无根树计数的问题。
prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码。
(1)无根树转化为prufer序列。
首先定义无根树中度数为1的节点是叶子节点。
找到编号最小的叶子并删除,序列中添加与之相连的节点编号,重复执行直到只剩下2个节点。
如下图的树对应的prufer序列就是3,5,1,3。
具体实现可以用一个set搞定,维护度数为1的节点。复杂度O(nlogn)。
(2)prufer序列转化为无根树。
设点集V={1,2,3,...,n},每次取出prufer序列中最前面的元素u,在V中找到编号最小的没有在prufer序列中出现的元素v,给u,v连边然后分别删除,最后在V中剩下两个节点,给它们连边。最终得到的就是无根树。
具体实现也可以用一个set,维护prufer序列中没有出现的编号。复杂度O(nlogn)。
最后有一个很重要的性质就是prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1。
一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
上面这句话比较重要。通过上面的定理,
1)我们可以直接推出n个点的无向完全图的生成树的计数:n^(n-2) 即n个点的有标号无根树的计数。
2)一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有 (n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ] 个,因为此时Prüfer编码中的数字i恰好出现Di-1次。
即 n种元素,共n-2个,其中第i种元素有Di-1个,求排列数。
3)n个节点的度依次为D1, D2, …, Dn,令有m个节点度数未知,求有多少种生成树?(BZOJ1005 明明的烦恼)
令每个已知度数的节点的度数为di,有n个节点,m个节点未知度数,left=(n-2)-(d1-1)-(d2-1)-...-(dk-1)
已知度数的节点可能的组合方式如下
(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left!
剩余left个位置由未知度数的节点随意填补,方案数为m^left
于是最后有
ans=(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left! * m^left
「prufer」的更多相关文章
- 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序
[题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...
- 「BZOJ1005」[HNOI2008] 明明的烦恼
「BZOJ1005」[HNOI2008] 明明的烦恼 先放几个prufer序列的结论: Prufer序列是一种对有标号无根树的编码,长度为节点数-2. 具体存在无根树转化为prufer序列和prufe ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
随机推荐
- Kafka集群搭建和配置
Kafka配置优化 https://www.jianshu.com/p/f62099d174d9 1.安装&配置 下载tar包 解压后即可使用 修改配置文件 将server.propertie ...
- crond服务总结
昨天翻阅程序发现服务器端管理程序的启动方式很特别,在之前是由init进程启动程序脚本里的进程,昨天发现服务程序并没有在任何脚本中有启动的体现,但是服务程序确实是启动了,经过一番查找发现原来是crond ...
- python--008文件处理
一.文件操作 1.打开文件,获得文件句柄,并将句柄赋值给一个变量 2.通过句柄对文件操作 3.关闭文件 f=open('sg',encoding='utf-8') da=f.read() print( ...
- Cocos2d-X多线程(4) 在子线程中进行网络请求
新版本的android系统已经不允许在UI线程中进行网络请求了,必须新建一个线程. 代码实操: 头文件: #ifndef __TestThreadHttp_SCENE_H__ #define __Te ...
- squid的三种模式
一.squid代理服务器概述: 概述:Squid Cache(简称为Squid)是http代理服务器软件.Squid用途广泛,可以作为缓存服务器也可以作为缓存代理服务器,代理用户向web服务器请求数据 ...
- C++ 结构体重载运算符
听说这个东西有很多种写法什么的,来不及了(要退役了),先整一个之前用到的,可能用到的频率比较高的东西上来. struct node{ ll x,y; }; bool operator < (co ...
- python 并发编程 多路复用IO模型
多路复用IO(IO multiplexing) 这种IO方式为事件驱动IO(event driven IO). 我们都知道,select/epoll的好处就在于单个进程process就可以同时处理多个 ...
- 2019JAVA第八次实验报告
班级 计科二班 学号 20188442 姓名 吴怡君 完成时间 2019.11.1 评分等级 课程作业: 将奇数位小写字母改写为大写字母(用文件输出) 实验代码: package Domon7; im ...
- [转帖]数据库默认驱动、URL、端口
超详细的各种数据库默认驱动.URL.端口总结 http://database.51cto.com/art/201906/598043.htm 学习了解一下. 概述 今天主要对各种数据库默认端口和UR ...
- 【2019CSP-S游记】咕了好久了撒
对,证书已经发下来了,我才想起来写游记(虽然我个蒟蒻明明就是在写反思) 终于和父母商议好了以后怎么办,顺带找了一下班主任,在机房的电脑敲出来的(我来找教练,然后完全没找着,淦) 79分,众所周知CCF ...