####
'''
tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据
slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None)
tensor_list:如[images,labels] = [['img1','image2','imag3','img4','img5','img6'],[1,2,3,4,5,6]]
num_epochs:可选参数,迭代次数 num_epochs=None 无限次遍历tensor列表 num_epochs=N 生成器只能遍历列表N次
shuffle:shuffle=True 乱序样本 shuffle=False需要在批处理时使用tf.train.shuffle_batch函数打乱样本
seed:随机数种子 在shuffle=True 时使用
capacity:设置tensor列表的容量
shared_name:可选参数,如果设置一个‘shared_name’,则在不同的上下文环境(Session)中可以通过这个名字共享生成的tensor
name:设置操作名称 '''
import tensorflow as tf ###思路:准备入文件名队列 创建线程 入队线程
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
for i in range(epoch_num):
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1]) '''
*************
0 [b'img1', 1] b'img1' 1
*************
1 [b'image2', 2] b'image2' 2
*************
2 [b'imag3', 3] b'imag3' 3
*************
3 [b'img4', 4] b'img4' 4
*************
4 [b'img5', 5] b'img5' 5
*************
5 [b'img6', 6] b'img6' 6
*************
6 [b'img1', 1] b'img1' 1
*************
7 [b'image2', 2] b'image2' 2
'''

准备 -- 创建线程 -- 入队线程

import tensorflow as tf

###思路:准备入文件名队列    创建线程    入队线程  异常处理
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
try:
for i in range(epoch_num):
if coord.should_stop(): ###查询是否应该终止所有线程,当文件队列(queue)中的所有文件都已经读取出列的时候,
# 会抛出一个 OutofRangeError 的异常,这时候就应该停止Sesson中的所有线程了;
break
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1])
except tf.errors.OutOfRangeError: ###如果读取文件到文件队列末尾会抛出此异常
print('完成!!现在终止所有线程')
finally:
##协调器coord发出所有线程终止信号,使用coord.join(threads)把线程加入主线程,等待threads结束
coord.request_stop()
print('所有线程请求终止')
coord.join(threads) ###把开启的线程加入主线程,等待threads结束
print('所有线程终止')

tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners的更多相关文章

  1. tensorflow|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners

    #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_prod ...

  2. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  3. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  4. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  5. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  6. tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...

  7. 【转载】 tf.train.slice_input_producer()和tf.train.batch()

    原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------- ...

  8. tf.train.slice_input_producer()

    tf.train.slice_input_producer处理的是来源tensor的数据 转载自:https://blog.csdn.net/dcrmg/article/details/7977687 ...

  9. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

随机推荐

  1. python依赖包整体迁移方法(pip)

    做个记录 python依赖包整体迁移方法

  2. php 模拟登陆(不带验证码)采集数据

    这里模拟表单登陆窗口 提交代码部分 1,生成session_id保存到 cookie $login_url = 'http://www.96net.com.cn/Login.php';$cookie_ ...

  3. 暂时放弃ts版个人博客转js版博客

    我本打算信心满满的做个vue+ts做个博客的,其实架构搭的差不多了,但是我在用vuex的时候发现一个自己无法忍受的瑕疵,那就是在用vuex的时候,得利于普通版vuex的map语法糖实在太好用,这把我惯 ...

  4. GitHub 风格的 Markdown 语法

    GitHub 风格的 Markdown 语法 [译] GitHub 风格的 Markdown 语法 Original: GitHub Flavored Markdown - GitHub Help T ...

  5. springcloud费话之配置中心server修改

    目录: springcloud费话之Eureka基础 springcloud费话之Eureka集群 springcloud费话之Eureka服务访问(restTemplate) springcloud ...

  6. elasticsearch 基础 —— Common Terms Query常用术语查询

    常用术语查询 该common术语查询是一个现代的替代提高了精确度和搜索结果的召回(采取禁用词进去),在不牺牲性能的禁用词. 问题 查询中的每个术语都有成本.搜索"The brown fox& ...

  7. android&iOS设计分辨率

    --- iPhone --- iPhone SE 1136 * 640 2.0875 iPhone 6 1334 * 750 1.778666666666667 iPhone X 2436 * 112 ...

  8. 【记录】eclipse jar包看不了源码

    第一步:下载JAD . jad官方地址的官方下载地址是: http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasem ...

  9. ssh-add - 向认证代理添加 RSA 或 DSA 身份数据

    总览 (SYNOPSIS) ssh-add [-lLdDx ] [-t life ] [file ... ] ssh-add -s reader ssh-add -e reader 描述 (DESCR ...

  10. better-scroll 的使用

    1.安装 cnpm install better-scroll --save 2.引入 import BScroll from "better-scroll"; 3.初始化 dat ...