####
'''
tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据
slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None)
tensor_list:如[images,labels] = [['img1','image2','imag3','img4','img5','img6'],[1,2,3,4,5,6]]
num_epochs:可选参数,迭代次数 num_epochs=None 无限次遍历tensor列表 num_epochs=N 生成器只能遍历列表N次
shuffle:shuffle=True 乱序样本 shuffle=False需要在批处理时使用tf.train.shuffle_batch函数打乱样本
seed:随机数种子 在shuffle=True 时使用
capacity:设置tensor列表的容量
shared_name:可选参数,如果设置一个‘shared_name’,则在不同的上下文环境(Session)中可以通过这个名字共享生成的tensor
name:设置操作名称 '''
import tensorflow as tf ###思路:准备入文件名队列 创建线程 入队线程
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
for i in range(epoch_num):
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1]) '''
*************
0 [b'img1', 1] b'img1' 1
*************
1 [b'image2', 2] b'image2' 2
*************
2 [b'imag3', 3] b'imag3' 3
*************
3 [b'img4', 4] b'img4' 4
*************
4 [b'img5', 5] b'img5' 5
*************
5 [b'img6', 6] b'img6' 6
*************
6 [b'img1', 1] b'img1' 1
*************
7 [b'image2', 2] b'image2' 2
'''

准备 -- 创建线程 -- 入队线程

import tensorflow as tf

###思路:准备入文件名队列    创建线程    入队线程  异常处理
images = ['img1','image2','imag3','img4','img5','img6']
labels = [1,2,3,4,5,6] epoch_num = 8
queue = tf.train.slice_input_producer([images,labels],num_epochs=None,shuffle=False) #从文件里抽取tensor,准备放入文件名队列
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator() ###创建一个线程协调器,用来管理之后再Session中启动的所有线程
###启动入队线程,由多个或单个线程,按照设定规则把文件读入到文件名队列中,返回线程ID的列表。一般情况下,系统有多少核,就会启动多少个入队线程
###入队具体使用多少个线程在tf.train.batch中设定
threads = tf.train.start_queue_runners(sess,coord=coord)
try:
for i in range(epoch_num):
if coord.should_stop(): ###查询是否应该终止所有线程,当文件队列(queue)中的所有文件都已经读取出列的时候,
# 会抛出一个 OutofRangeError 的异常,这时候就应该停止Sesson中的所有线程了;
break
k = sess.run(queue)
print("*************")
print(i,k,k[0],k[1])
except tf.errors.OutOfRangeError: ###如果读取文件到文件队列末尾会抛出此异常
print('完成!!现在终止所有线程')
finally:
##协调器coord发出所有线程终止信号,使用coord.join(threads)把线程加入主线程,等待threads结束
coord.request_stop()
print('所有线程请求终止')
coord.join(threads) ###把开启的线程加入主线程,等待threads结束
print('所有线程终止')

tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners的更多相关文章

  1. tensorflow|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners

    #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_prod ...

  2. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  3. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  4. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  5. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  6. tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...

  7. 【转载】 tf.train.slice_input_producer()和tf.train.batch()

    原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------- ...

  8. tf.train.slice_input_producer()

    tf.train.slice_input_producer处理的是来源tensor的数据 转载自:https://blog.csdn.net/dcrmg/article/details/7977687 ...

  9. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

随机推荐

  1. 前缀和序列 & 差分序列

    前缀和序列 所谓前缀和数组,就是从第一个元素到当前元素的和.假设这个前缀和数组为d[],原数组为a[],那么d[ i ] = a[ 1 ]+a[ 2 ]+a[ 3 ]+...+a[ i-1 ]+a[ ...

  2. Notepad++添加插件Funtion List 支持PHP

    插件下载地址:functionlist插件 配置方法:关闭notepad++; functionlist.dll拷贝到 安装目录/plugins目录下; 下载php.bmp 地址:https://gi ...

  3. python学习第二十二天文件byte类型

    所有的文件在计算机里面存储为二进制形式,但是我们有时候有需要将二进制转换为gbk或者utf-8形式,编码的时候encode 解码的时候decode ,下面简单阐述python二进制在文件传输过程的作用 ...

  4. 有关css的兼容问题

    兼容性 1    页面在不同浏览器中可能显示不同  在IE6下 子级的宽度会撑开父级设置好的宽度   温馨提示:和模型的计算一定要精确,IE浏览器可能显示不同   兼容性 2    在IE6中,元素浮 ...

  5. 5.把报表集成到Web应用程序中-生成网页和导出两种方式

    转自:https://wenku.baidu.com/view/104156f9770bf78a65295462.html 第四部分,把报表集成到Web应用程序中 用MyEclipse新建一个Web ...

  6. elasticsearch 基础 —— 集群原理

    空集群 如果我们启动了一个单独的节点,里面不包含任何的数据和 索引,那我们的集群看起来就是一个 图 1 "包含空内容节点的集群". 图 1. 包含空内容节点的集群 一个运行中的 E ...

  7. shell条件判断命令test

  8. java ArrayList练习题

    package java06; /* *随机产生6的1——33的数字,并存储到列表中,再进行遍历 * */ import java.util.ArrayList; import java.util.R ...

  9. BZOJ2839 集合计数 二项式反演

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2839 题解 二项式反演板子题. 类似于一般的容斥,我们发现恰好 \(k\) 个不怎么好求,但是 ...

  10. Sublime Text3添加C++编译与运行

    安装MinGW 1.安装MinGW ,其安装方法一直下一步,安装完后点Continue会出现一个窗口,在Basic Setup下标记所有包,然后在菜单里点"Apply Changes&quo ...