题解

考虑\(dp\)

\[dp[i]=\sum_{i=0}^{i-1}dp[j]*(i-j)^2
\]

我们可以设\((i-j)\)为\(x\),那么随着\(i\)向右移动一格,每个\(x\)都是会增长\(1\)的。

\[dp[i]=\sum_{i=0}^{i-1}dp[j]*(x+1)^2
\]

\[dp[i]=\sum_{i=0}^{i-1}dp[j]*(x^2+2x+1)
\]

为了转移,我们需要将这三段分开维护。

注意,当没有障碍点的时候,转移需要再加上一个\(dp[i]\)。

转移的时候构造矩阵就可以了。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,m;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
struct matrix{
ll a[3][3];
matrix(){memset(a,0,sizeof(a));}
inline matrix operator *(const matrix &b)const{
matrix c;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j){
c.a[i][j]=0;
for(int k=0;k<3;++k)
MOD(c.a[i][j]+=a[i][k]*b.a[k][j]%mod);
}
return c;
}
inline void print(){
for(int i=0;i<3;++i){
for(int j=0;j<3;++j)cout<<a[i][j]<<" ";puts("");
}
puts("");
}
}a1,a2,ans;
inline matrix solve(matrix a,matrix b,int c){
while(c){
if(c&1)a=a*b;
b=b*b;
c>>=1;
}
return a;
}
int main(){
n=rd();m=rd();
a1.a[0][0]=1;a1.a[1][0]=1;a1.a[1][1]=1;a1.a[2][0]=1;a1.a[2][1]=2;a1.a[2][2]=1;
a2=a1;a2.a[0][2]++;a2.a[1][2]++;a2.a[2][2]++;
ans.a[0][2]=1;
int x=0,pre=1;
for(int i=1;i<=m;++i){
x=rd();
ans=solve(ans,a2,x-pre);
ans=ans*a1;
pre=x+1;
}
ans=solve(ans,a2,n-pre);
cout<<(ans.a[0][0]+ans.a[0][1]+ans.a[0][2])%mod;
return 0;
}

AT2371 Placing Squares的更多相关文章

  1. AtCoder Grand Contest 013 E - Placing Squares

    题目传送门:https://agc013.contest.atcoder.jp/tasks/agc013_e 题目大意: 给定一个长度为\(n\)的木板,木板上有\(m\)个标记点,距离木板左端点的距 ...

  2. AGC013 E Placing Squares——模型转化+矩阵乘法

    题目:https://atcoder.jp/contests/agc013/tasks/agc013_e 边长的平方,可以看做是在该范围内放两个不同的球的方案数.两个球可以重合. 题意变成:给长为 n ...

  3. Atcoder Grand Contest 013 E - Placing Squares(组合意义转化+矩阵快速幂/代数推导,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 这是一道难度 Cu 的 AGC E,碰到这种思维题我只能说:not for me,thx 然鹅似乎 ycx 把题看错了? 首先这个平方与乘法比较 ...

  4. Solution -「AGC 013E」「AT 2371」Placing Squares

    \(\mathcal{Description}\)   Link.   给定一个长度为 \(n\) 的木板,木板上有 \(m\) 个标记点,第 \(i\) 个标记点距离木板左端点的距离为 \(x_i\ ...

  5. 【AtCoder】AGC013

    AGC013 A - Sorted Arrays 直接分就行 #include <bits/stdc++.h> #define fi first #define se second #de ...

  6. A#G/C013

    A#G/C013 A Sorted Arrays 不会/kk B Hamiltonish Path 我是傻逼 如果一条路径不合法,那么把不合法的端点向没出现过的相邻点连过去救星了 C Ants on ...

  7. 一个小 Trick

    平方变两次 一个状态 \(S\) 有一个贡献,所有状态 \(S\) 组成集合 \(U\) . 然后我们要统计下面这个东西 \[ans=\sum_{S\in U}f^2(S) \] 然后我们就可以看作是 ...

  8. [LeetCode] Word Squares 单词平方

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  9. 卡通图像变形算法(Moving Least Squares)附源码

    本文介绍一种利用移动最小二乘法来实现图像变形的方法,该方法由用户指定图像中的控制点,并通过拖拽控制点来驱动图像变形.假设p为原图像中控制点的位置,q为拖拽后控制点的位置,我们利用移动最小二乘法来为原图 ...

随机推荐

  1. Spark集成的包与引入包冲突

    今天在编写Spark应用的时候,想把处理结果输出为JSON字符串,查到Java比较常用的JSON处理包gson,按照其API编写代码后运行程序,总是出现"NoSuchMethodExcept ...

  2. iScroll使用参考

    分享是传播.学习知识最好的方法 以下这篇文章是iScroll.js官网的中文翻译,尽管自己英文不好,但觉得原作者们翻译的这个资料还是可以的,基本用法介绍清楚了.如果你英文比较好的话,可以看看官网的资料 ...

  3. spark Master启动流程

    spark Master是spark集群的首脑,负责资源调度,任务分配,负载平衡等功能 以下是master启动流程概述 通过shell进行对master进行启动 首先看一下启动脚本more start ...

  4. Luogu P5444 [APIO2019]奇怪装置

    题目 这种题目看上去就是有循环节的对吧. 在考场上,一个可行的方式是打表. 现在我们手推一下这个循环节. 记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\% ...

  5. SCUT - 483 - 数轴上的点

    https://scut.online/p/483 改了题目之后发现,其实n个点放在[1,2N],要求间距至少是2,那么有且只有一个点和前面点的间距是3(设-1存在一个点),其他点的间距都必须是2.排 ...

  6. 通过编写串口助手工具学习MFC过程——(六)添加Edit编辑框控件

    通过编写串口助手工具学习MFC过程 因为以前也做过几次MFC的编程,每次都是项目完成时,MFC基本操作清楚了,但是过好长时间不再接触MFC的项目,再次做MFC的项目时,又要从头开始熟悉.这次通过做一个 ...

  7. 【源码解读】cycleGAN(二) :训练

    源码地址:https://github.com/aitorzip/PyTorch-CycleGAN 训练的代码见于train.py,首先定义好网络,两个生成器A2B, B2A和两个判别器A, B,以及 ...

  8. css发展过程

    https://www.cnblogs.com/dashnowords/p/9460722.html

  9. Apache 的 httpd-mpm.conf 文件详解

    #prefork 多路处理模块 <IfModule mpm_prefork_module> StartServers              5   #设置服务器启动时建立的子进程数量, ...

  10. octave-bug - 报告 GNU Octave 中的 bug

    SYNOPSIS 总览 octave-bug [-s subject] DESCRIPTION 描述 octave-bug 是一个 shell 脚本,用于以一种标准的格式撰写有关 Octave 的 b ...