https://www.luogu.org/problem/P3469

翻译:一个原本连通的无向图,可以删除图中的一个点,求因为删除这个点所导致的不连通的有序点对的数量。或者说,删去这个点之后,各个连通分量的大小的乘积之和?

当然是考虑新学的Tarjan法求割点。一遍Tarjan给每个点记录他是不是割点。然后第二遍的时候对每个割点,统计它分割出的各个子树(及其父亲,假如有的话)这些连通块之间的贡献。

注意无向图是不需要栈的,因为无向图不存在横向边的说法。

错误代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN = 100005; int n;
vector<int> G[MAXN];
vector<int> T[MAXN]; int dfn[MAXN], low[MAXN], dfncnt;
bool cut[MAXN];
int siz[MAXN]; ll ans[MAXN]; void tarjan(int u, int p) {
low[u] = dfn[u] = ++dfncnt;
siz[u] = 1;
cut[u] = false;
if(p != -1)
T[u].push_back(p);
int ch = 0;
for(auto v : G[u]) {
if(!dfn[v]) {
tarjan(v, u);
T[u].push_back(v);
low[u] = min(low[u], low[v]);
siz[u] += siz[v];
if(p != -1 && low[v] >= dfn[u])
cut[u] = true;
else if(p == -1)
ch++;
} else
low[u] = min(low[u], dfn[v]);
}
if(p == -1 && ch >= 2)
cut[u] = true;
} bool vis[MAXN];
void dfs(int u, int p) {
vis[u] = 1;
for(auto v : T[u]) {
if(!vis[v])
dfs(v, u);
}
if(cut[u]) {
ll sum = 0;
ans[u] = 0;
for(auto v : T[u]) {
if(v == p) {
sum += n - siz[u];
ans[u] -= 1ll * (n - siz[u]) * (n - siz[u]);
} else {
sum += siz[v];
ans[u] -= 1ll * siz[v] * siz[v];
}
}
ans[u] += sum * sum + 2ll * sum;
} else
ans[u] = 2ll * (n - 1);
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int m;
scanf("%d%d", &n, &m);
for(int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
tarjan(1, -1);
dfs(1, -1);
for(int i = 1; i <= n; ++i) {
printf("%lld\n", ans[i]);
}
return 0;
}

错误原因:某个节点u的子树v中可能出现了反向边(反向到u之前),这棵子树则和u节点的父亲节点等形成了连通块,假如要分段统计,则要在u节点标记哪些子树才是真正会被分开的子树。

那么在这个问题里面对于根节点来说,每棵子树是必定会被分开的,可以统一处理掉。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN = 100005; int n;
vector<int> G[MAXN]; int dfn[MAXN], low[MAXN], dfncnt; ll ans[MAXN];
int siz[MAXN]; void tarjan(int u, int p) {
low[u] = dfn[u] = ++dfncnt;
siz[u] = 1;
ll sum=0;
int ch = 0;
for(auto v : G[u]) {
if(!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
siz[u] += siz[v];
if(low[v] >= dfn[u]){
ans[u]+=sum*siz[v];
sum+=siz[v];
}
} else
low[u] = min(low[u], dfn[v]);
}
ans[u]+=(n-1-sum)*sum;
ans[u]+=(n-1);
ans[u]*=2ll;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int m;
scanf("%d%d", &n, &m);
for(int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
tarjan(1, -1);
for(int i = 1; i <= n; ++i)
printf("%lld\n", ans[i]); return 0;
}

洛谷 - P3469 - BLO-Blockade - 割点的更多相关文章

  1. 洛谷 P3469 [POI2008]BLO-Blockade (Tarjan,割点)

    P3469 [POI2008]BLO-Blockade https://www.luogu.org/problem/P3469 题目描述 There are exactly nn towns in B ...

  2. 【洛谷 P3469】[POI2008]BLO-Blockade(割点)

    题目链接 题意:一个无向联通图,求删去每个点及其所有边后有多少有序点对的连通性发生了变化. Tarjan求割点的例题.. 如果当前点不是割点,那么它对整个图的连通性不产生影响,只有自己与其他\(n-1 ...

  3. 【洛谷P3469】BLO

    题目大意:给定 N 个点,M 条边的联通无向图,求出对于每个点来说,将与这个点相连的所有边都去掉后,会少多少个联通的点对 (x,y). 题解:连通性问题从 DFS 树的角度进行考虑.对于 DFS 树当 ...

  4. 「洛谷P3469」[POI2008]BLO-Blockade 解题报告

    P3469[POI2008]LO-Blockade 题意翻译 在Byteotia有n个城镇. 一些城镇之间由无向边连接. 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些).每两个 ...

  5. 洛谷P3469[POI2008]BLO-Blockade

    题目 割点模板题. 可以将图中的所有点分成两部分,一部分是去掉之后不影响图的连通性的点,一部分是去掉之后影响连通性的点,称其为割点. 然后分两种情况讨论,如果该点不是割点,则最终结果直接加上2*(n- ...

  6. 【洛谷P3469】[POI2008]BLO-Blockade

    BLO-Blockade 题目链接 若一个点为割点:统计出每个子树的大小,两两相乘再相加, 再加上n-1,为这个点与其他点的拜访数, 因为拜访是互相的,最后再乘二即可 若一个点不是割点:只有(n-1) ...

  7. 【洛谷P3388】(模板)割点

    [模板]割点 割点集合:一个顶点集合V,删除该集合的所有定点以及与这些顶点相连的边后,原图不连通,就称集合V为割点集合 点连通度:最小割点集合中的顶点数 边连通度:最小割边集合中的边数 割点:割点集合 ...

  8. 洛谷 [P3496] BLO

    割点 首先 tarjan 求割点, 对于不是割点的点, 答案是 2 * (n-1) 有序,所以要乘 2 对于是割点的点, 答案是删去该点后所有连通块的个数加上 n-1 在乘 2 #include &l ...

  9. 洛谷 P3469 [POI2008]BLO-Blockade 题解

    一道经典的割点例题,用size数组记录该子树有多少个节点,sum是这棵搜索树上有多少个节点,sum*(n-sum-1)是将点删掉后的数对数量. #include<iostream> #in ...

随机推荐

  1. C++入门经典-例6.18-数组的动态分配,动态获得斐波那契数列

    1:有时在获得一定的信息之前,我们并不确定数组的大小.动态分配数组则可以使用变量作为数组的大小,使数组的大小符合我们的要求. 2:科普一下斐波纳契数列:斐波那契数列指的是这样一个数列 1, 1, 2, ...

  2. C++入门经典-例3.6-判断某一年是否是闰年之复合表达式法

    1:代码如下: // 3.6.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  3. nginx location正则

    nginx location正则写法 一个示例: location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # ...

  4. java.sql.SQLSyntaxErrorException: ORA-01795: 列表中的最大表达式数为 1000

    后台报了一些异常日志,查阅后发现在 oracle 数据库中使用 in 关键字条件不能超过 1000 个,当时写查询语句时没有关注这个问题 总结一下解决方法 1.分多次查询,对查询要求不高的话.把入参的 ...

  5. [论文理解] Receptive Field Block Net for Accurate and Fast Object Detection

    Receptive Field Block Net for Accurate and Fast Object Detection 简介 本文在SSD基础上提出了RFB Module,利用神经科学的先验 ...

  6. leetcode-easy-string-14 Longest Common Prefix

    mycode   91.59% class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if not str ...

  7. C++抽象类实践

    实践如下: #include <iostream> using namespace std; class Service { public: // 有一个虚函数即为抽象类 int id; ...

  8. log4j.properties 文件,放在 src 下

    log4j.rootLogger=INFO,CONSOLE,ERRORLOGlog4j.appender.CONSOLE=org.apache.log4j.ConsoleAppenderlog4j.a ...

  9. leetcode 102二叉树的层序遍历

    5月20更新: 使用借助队列实现bfs,定义len记录队列的尺寸直接进行遍历层序 /** * Definition for a binary tree node. * struct TreeNode ...

  10. webshell 常见 Bypass waf 技巧总结

    在渗透学习的过程中,总会遇到各种情况,例如 php 大马被 waf 拦截的时候,那么如何制作免杀 php webshell 呢,接下来就由我带各位小伙伴们一起踏上大马免杀之路,不喜勿喷. 一篇好的文章 ...