Tarjan水题系列(5):最大半连通子图 [ZJOI2007 luogu P2272]
大意:
缩点后转为求最长链的长度和最长链的个数
思路:
看懂题就会做系列 长度和个数都可以拓扑排序后DP求得 毕竟是2007年的题
代码:
如下
#include <cstdio>
#include <iostream>
#include <memory.h>
#define r(x) x=read()
#define MAXX 100005
#define MIN(a,b) (a<b?a:b)
#define MAX(a,b) (a>b?a:b)
#define re register
using namespace std;
typedef long long ll;
int read()
{
char ch=;int w=;
while(ch<''||ch>''){ch=getchar();}
while(ch>=''&&ch<=''){w=w*+ch-'';ch=getchar();}
return w;
}
int low[MAXX],dfn[MAXX],k,id[MAXX],num,top,sta[MAXX],du[MAXX];
int h2[MAXX],h[MAXX],u,to,cnt,book[MAXX],heap,sta2[MAXX];
int X,dp[MAXX],ans,w[MAXX],ans2[MAXX];
int n,m;
struct edge{int to,nex;}e[MAXX<<],e2[MAXX<<];
void add(int u,int to,int x)
{
cnt++;
if(x==) {e2[cnt]=(edge){to,h2[u]};h2[u]=cnt;}
if(x==) {e[cnt]=(edge){to,h[u]};h[u]=cnt;}
}
void tarjan(int now)
{
low[now]=dfn[now]=++k;
sta[++top]=now;
for(int i=h2[now];i;i=e2[i].nex)
{
if(!dfn[e2[i].to])
tarjan(e2[i].to),low[now]=MIN(low[now],low[e2[i].to]);
else
if(!id[e2[i].to])
low[now]=MIN(low[now],dfn[e2[i].to]);
}
if(dfn[now]==low[now])
{
id[now]=++num;
while(sta[top]!=now){id[sta[top]]=num;--top;}
top--;
}
}
int main()
{
r(n),r(m),r(X);
for(re int i=;i<=m;++i)
r(u),r(to),add(u,to,);
for(re int i=;i<=n;++i)
if(!dfn[i])
tarjan(i);
for(re int i=;i<=n;++i)
w[id[i]]++;
cnt=;
for(re int i=;i<=n;++i)
for(re int j=h2[i];j;j=e2[j].nex)
{
int y=id[e2[j].to],x=id[i];
if(x!=y) add(x,y,),du[y]++;
}
for(re int i=;i<=num;++i)
if(!du[i]) sta[++top]=i,dp[i]=w[i],ans2[i]=;
for(re int i=;i<=top;++i)
{
int x=sta[i];
for(re int j=h[x];j;j=e[j].nex)
{
du[e[j].to]--;
if(du[e[j].to]==) sta[++top]=e[j].to;
if(book[e[j].to]) continue;
book[e[j].to]=,sta2[++heap]=e[j].to;
if(dp[e[j].to]<dp[x]+w[e[j].to])
dp[e[j].to]=dp[x]+w[e[j].to],ans2[e[j].to]=;
if(dp[e[j].to]==dp[x]+w[e[j].to])
ans2[e[j].to]=(ans2[e[j].to]+ans2[x])%X;
}
while(heap){book[sta2[heap]]=;heap--;}
ans=MAX(ans,dp[x]);
}
ll anse=;
for(int i=;i<=num;++i)
if(dp[i]==ans) anse=(anse+ans2[i])%X;
printf("%d\n%lld",ans,anse);
return ;
}
Tarjan水题系列(5):最大半连通子图 [ZJOI2007 luogu P2272]的更多相关文章
- [BZOJ]1093 最大半连通子图(ZJOI2007)
挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- Tarjan水题系列(4):HAOI2010 软件安装
题目: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). ...
- Tarjan水题系列(3):HNOI2006 潘多拉的魔盒
题目: 链接 大意: 盒子与盒子之间的关系构成一个有向图 求图上包含节点数最多的路径的节点数 思路: 有向图上求包含节点数最多的路径的节点数 可直接使用tarjan缩点后拓扑dp求得 在此不赘述 此题 ...
- Tarjan水题系列(2):HNOI2012 矿场搭建
题目: 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后 ...
- Tarjan水题系列(1):草鉴定Grass Cownoisseur [USACO15JAN]or[luogu P3119]
题目如下: 约翰有n块草场,编号1到n,这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草. 贝西总是从1号草场出发,最后回到1号草场.她想经过尽可能多的草场,贝 ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
随机推荐
- extern、static
1. 基本解释:extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 也就是说exter ...
- 如何在IntelliJ Idea中同时启动不同端口
配置多实例: 选择Idea右上角启动按钮边上的Edit Configurations,在打开的对话框中,去掉Single Instance Only的选项,VM Options中增加-Dserver. ...
- [LOJ3106][TJOI2019]唱、跳、rap和篮球:DP+生成函数+NTT+容斥原理
分析 令\(f(i)\)表示共\(i\)组同学讨论cxk的位置的方案数(不考虑其他位置上的人的爱好),这个数组可以很容易地通过依次考虑每个位置是否是四个人中最后一个人的位置来递推求解,时间复杂度\(O ...
- F - Almost Sorted Array
F - Almost Sorted Array We are all familiar with sorting algorithms: quick sort, merge sort, heap ...
- [JZOJ5398]:Adore(状压DP+记忆化搜索)
题目描述 小$w$偶然间见到了一个$DAG$. 这个$DAG$有$m$层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有$k$个节点. 现在小$w$每次可以取反第$i(1<i< ...
- linux 下使用命令查看jvm信息
java程序员除了编写业务代码之外,特别是项目上线之后,更需要关注的是系统的性能表现,这个时候就需要了解一下jvm的性能表现了,可以借助于java虚拟机自带的一些分析工具,主要有三个常用的命令. 1. ...
- mysql 将时间戳与日期时间的转换
from_unixtime()是MySQL里的时间函数 mysql>SELECT FROM_UNIXTIME( 1249488000, '%Y%m%d' ) ->20071120 mys ...
- conda查看某个安装包的依赖项
查看某个安装包XXX的依赖项的conda指令为: conda search XXX -info 比如XXX为pytorch0.3.1,就会有如下输出: pytorch 0.3.1 py36hfbe70 ...
- Cas服务器以及客户端搭建
一.搭建cas服务器 官网:http://jasig.github.io/cas/ Cas Server 下载:http://developer.jasig.org/cas/ Cas Client 下 ...
- sqlToolbox 1.82 Beta版 下载
下载链接:https://pan.baidu.com/s/1jCTRe0NGgEb5qF3BDN_jTQ 久违的回忆. 2019年8月30日13点43分