[POJ3694]Network(Tarjan,LCA)
[POJ3694]Network
Description
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.
You are to help the administrator by reporting the number of bridges in the network after each new link is added.
Input
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.
The last test case is followed by a line containing two zeros.
Output
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
Sample Input
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
Sample Output
Case 1:
1
0
Case 2:
2
0
题意
给定一张\(N\)个点\(M\)条边的无向连通图,然后执行\(Q\)次操作,每次向图中添加一条边,并且询问当前无向图中“桥”的数量。
核心知识:边双联通分量
先一遍\(tarjan\)把原图中的桥全部标记,然后\(dfs\)把各个边双联通分量建成树。
考虑到每次加边:
1.两端点在同一个边双联通分量中,对答案不造成影响。
2.两端点不在同一个边双联通分量,因为在树中,所以可以形成一个环,两个边双联通分量之间的路径不再是桥,在总答案中减去。
因为本题时间比较宽裕,所以我们暴力往上跳就可以过了,但是还可以用并查集优化,但是没有打出来,下次再填坑吧。。。
边双联通分量的求法
求出无向图中所有的桥,把桥“删除”,无向图会分成若干个联通块,每一个联通块就是一个边双联通分量。求边双联通分量的时间复杂度:\(O(n)\)。
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=100010;
int n,m,q,t,cnt=1,visnum,num,ans,a,b;
int head[2*N],dfn[N],low[N],fa[2*N],x[2*N],y[2*N],deep[2*N];
bool bridge[4*N],vis[N],dcc[N];
struct node{
int to,next;
}edge[8*N];
void add(int x,int y)
{
cnt++;edge[cnt].to=y;edge[cnt].next=head[x];head[x]=cnt;
}
int gfa(int x){if(fa[x]==x)return x;return fa[x]=gfa(fa[x]);}
void tarjan(int k,int last)
{
dfn[k]=low[k]=++visnum;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
tarjan(v,i);low[k]=min(low[k],low[v]);
if(low[v]>dfn[k])
{
bridge[i]=bridge[i^1]=1;ans++;
}
}
else if(i!=(last^1))low[k]=min(low[k],dfn[v]);
}
}
void dfs1(int k)
{
vis[k]=1;fa[k]=num;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;if(vis[v]||bridge[i])continue;
dfs1(v);
}
}
void dfs2(int k,int f)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;if(v==f)continue;
deep[v]=deep[k]+1;fa[v]=k;dcc[v]=1;dfs2(v,k);
}
}
int jump(int xx,int yy)
{
int qwe=0;if(deep[xx]<deep[yy]) swap(xx,yy);
while(deep[xx]>deep[yy])
{
if(dcc[xx]) dcc[xx]=0,qwe++;xx=fa[xx];
}
if(xx==yy)return qwe;
while(xx!=yy)
{
if(dcc[xx]) dcc[xx]=0,qwe++;xx=fa[xx];
if(dcc[yy]) dcc[yy]=0,qwe++;yy=fa[yy];
}
return qwe;
}
int main()
{
while(1)
{
n=read();m=read();if(n==0)break;t++;num=n;
for(int i=1;i<=m;i++)
{
x[i]=read();y[i]=read();
add(x[i],y[i]);add(y[i],x[i]);
}
tarjan(1,0);
for(int i=1;i<=n;i++)
{
if(!vis[i]){num++;fa[num]=num;dfs1(i);}
}
for(int i=1;i<=m;i++)
{
int xx=gfa(x[i]),yy=gfa(y[i]);
if(xx!=yy) add(xx,yy),add(yy,xx);
}
deep[n+1]=1;dfs2(n+1,0);q=read();
printf("Case %d:\n",t);
for(int j=1;j<=q;j++)
{
a=read();b=read();
int xx=fa[a],yy=fa[b];
if(xx!=yy) ans-=jump(xx,yy);printf("%d\n",ans);
}
printf("\n");
}
}
[POJ3694]Network(Tarjan,LCA)的更多相关文章
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
[BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...
- 【洛谷5008】逛庭院(Tarjan,贪心)
[洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...
- POJ 1236 Network of Schools(tarjan算法 + LCA)
这个题目网上有很多答案,代码也很像,不排除我的.大家的思路应该都是taijan求出割边,然后找两个点的LCA(最近公共祖先),这两个点和LCA以及其他点构成了一个环,我们判断这个环上的割边有几条,我们 ...
- SPOJ 3978 Distance Query(tarjan求LCA)
The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...
- HDU-3072-IntelligenceSystem(tarjan,贪心)
链接:https://vjudge.net/problem/HDU-3072 题意: 给你n个点,1个点到另一个点连接花费c,但是如果几个点可以相互可达,则这几个点连通花费为0. 求将整个图连通的最小 ...
- [Poj2349]Arctic Network(二分,最小生成树)
[Poj2349]Arctic Network Description 国防部(DND)要用无线网络连接北部几个哨所.两种不同的通信技术被用于建立网络:每一个哨所有一个无线电收发器,一些哨所将有一个卫 ...
- POJ 1144 Network(Tarjan求割点)
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12707 Accepted: 5835 Descript ...
- 【BZOJ1924】【SDOI2010】所驼门王的宝藏(Tarjan,SPFA)
题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...
随机推荐
- Qt中图元对象的多重集成
在继承自定义QGraphicsItem图元对象时,有时需要用到信号/槽机制,由于QGraphicsItem非QObject的子类 所以需要多重继承QObject,有一点需要特别注意:就是继承的顺序,一 ...
- CodeForces - 474D (dp)
题目:https://vjudge.net/contest/326867#problem/B 题意:有很多个蛋糕,现在你有两种吃蛋糕的吃法,一次吃一个,定为A,一次吃k个定为B,然后问你吃m个蛋糕有多 ...
- SQLserver基础--连接查询、联合查询、索引
一.子查询补充: Exists的用法:select*from haha where exists(select*from bumen where bumen.code=haha.bumen,and b ...
- 使用xshell连接Ubuntu虚拟机
1.下载安装VMware软件,可以试用. 2.新建虚拟机,选择典型安装,这里安装Ubuntu16.04 LTS,注意选择网络连接时设置为 桥接模式,在“编辑”--“虚拟网络编辑器”中将DHCP 池中的 ...
- 【ABAP系列】SAP ABAP选择屏幕(SELECTION SCREEN)事件解析
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP选择屏幕(SEL ...
- idea多行注释缩进
选中多行代码 - 按下tab键——向后整体移动 选中多行代码 - 按下shift + tab键——向前整体缩进(整体去掉代码前面的空格)
- 使用 Spring HATEOAS 开发 REST 服务
使用 Spring HATEOAS 开发 REST 服务 学习博客:https://www.ibm.com/developerworks/cn/java/j-lo-SpringHATEOAS/ htt ...
- Mac入门--通过Homebrew安装PHP(新)
1 首先安装homebrew,安装过的话更新 安装:homebrew官网地址:https://brew.sh/index_zh-cn.html.或者直接复制下面代码: /usr/bin/ruby -e ...
- 红黑树的删除操作---以JDK源码为例
删除操作需要处理的情况: 1.删除的是红色节点,则删除节点并不影响红黑树的树高,无需处理. 2.删除的是黑色节点,则删除后,删除节点所在子树的黑高BH将减少1,需要进行调整. 节点标记: 正在处理的节 ...
- Implement Queue using Stacks(用两个栈实现队列)
来源:https://leetcode.com/problems/implement-queue-using-stacks Implement the following operations of ...