[POJ3694]Network(Tarjan,LCA)
[POJ3694]Network
Description
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.
You are to help the administrator by reporting the number of bridges in the network after each new link is added.
Input
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.
The last test case is followed by a line containing two zeros.
Output
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
Sample Input
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
Sample Output
Case 1:
1
0
Case 2:
2
0
题意
给定一张\(N\)个点\(M\)条边的无向连通图,然后执行\(Q\)次操作,每次向图中添加一条边,并且询问当前无向图中“桥”的数量。
核心知识:边双联通分量
先一遍\(tarjan\)把原图中的桥全部标记,然后\(dfs\)把各个边双联通分量建成树。
考虑到每次加边:
1.两端点在同一个边双联通分量中,对答案不造成影响。
2.两端点不在同一个边双联通分量,因为在树中,所以可以形成一个环,两个边双联通分量之间的路径不再是桥,在总答案中减去。
因为本题时间比较宽裕,所以我们暴力往上跳就可以过了,但是还可以用并查集优化,但是没有打出来,下次再填坑吧。。。
边双联通分量的求法
求出无向图中所有的桥,把桥“删除”,无向图会分成若干个联通块,每一个联通块就是一个边双联通分量。求边双联通分量的时间复杂度:\(O(n)\)。
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=100010;
int n,m,q,t,cnt=1,visnum,num,ans,a,b;
int head[2*N],dfn[N],low[N],fa[2*N],x[2*N],y[2*N],deep[2*N];
bool bridge[4*N],vis[N],dcc[N];
struct node{
int to,next;
}edge[8*N];
void add(int x,int y)
{
cnt++;edge[cnt].to=y;edge[cnt].next=head[x];head[x]=cnt;
}
int gfa(int x){if(fa[x]==x)return x;return fa[x]=gfa(fa[x]);}
void tarjan(int k,int last)
{
dfn[k]=low[k]=++visnum;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
tarjan(v,i);low[k]=min(low[k],low[v]);
if(low[v]>dfn[k])
{
bridge[i]=bridge[i^1]=1;ans++;
}
}
else if(i!=(last^1))low[k]=min(low[k],dfn[v]);
}
}
void dfs1(int k)
{
vis[k]=1;fa[k]=num;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;if(vis[v]||bridge[i])continue;
dfs1(v);
}
}
void dfs2(int k,int f)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;if(v==f)continue;
deep[v]=deep[k]+1;fa[v]=k;dcc[v]=1;dfs2(v,k);
}
}
int jump(int xx,int yy)
{
int qwe=0;if(deep[xx]<deep[yy]) swap(xx,yy);
while(deep[xx]>deep[yy])
{
if(dcc[xx]) dcc[xx]=0,qwe++;xx=fa[xx];
}
if(xx==yy)return qwe;
while(xx!=yy)
{
if(dcc[xx]) dcc[xx]=0,qwe++;xx=fa[xx];
if(dcc[yy]) dcc[yy]=0,qwe++;yy=fa[yy];
}
return qwe;
}
int main()
{
while(1)
{
n=read();m=read();if(n==0)break;t++;num=n;
for(int i=1;i<=m;i++)
{
x[i]=read();y[i]=read();
add(x[i],y[i]);add(y[i],x[i]);
}
tarjan(1,0);
for(int i=1;i<=n;i++)
{
if(!vis[i]){num++;fa[num]=num;dfs1(i);}
}
for(int i=1;i<=m;i++)
{
int xx=gfa(x[i]),yy=gfa(y[i]);
if(xx!=yy) add(xx,yy),add(yy,xx);
}
deep[n+1]=1;dfs2(n+1,0);q=read();
printf("Case %d:\n",t);
for(int j=1;j<=q;j++)
{
a=read();b=read();
int xx=fa[a],yy=fa[b];
if(xx!=yy) ans-=jump(xx,yy);printf("%d\n",ans);
}
printf("\n");
}
}
[POJ3694]Network(Tarjan,LCA)的更多相关文章
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
[BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...
- 【洛谷5008】逛庭院(Tarjan,贪心)
[洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...
- POJ 1236 Network of Schools(tarjan算法 + LCA)
这个题目网上有很多答案,代码也很像,不排除我的.大家的思路应该都是taijan求出割边,然后找两个点的LCA(最近公共祖先),这两个点和LCA以及其他点构成了一个环,我们判断这个环上的割边有几条,我们 ...
- SPOJ 3978 Distance Query(tarjan求LCA)
The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...
- HDU-3072-IntelligenceSystem(tarjan,贪心)
链接:https://vjudge.net/problem/HDU-3072 题意: 给你n个点,1个点到另一个点连接花费c,但是如果几个点可以相互可达,则这几个点连通花费为0. 求将整个图连通的最小 ...
- [Poj2349]Arctic Network(二分,最小生成树)
[Poj2349]Arctic Network Description 国防部(DND)要用无线网络连接北部几个哨所.两种不同的通信技术被用于建立网络:每一个哨所有一个无线电收发器,一些哨所将有一个卫 ...
- POJ 1144 Network(Tarjan求割点)
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12707 Accepted: 5835 Descript ...
- 【BZOJ1924】【SDOI2010】所驼门王的宝藏(Tarjan,SPFA)
题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...
随机推荐
- 大数据笔记(十三)——常见的NoSQL数据库之HBase数据库(A)
一.HBase的表结构和体系结构 1.HBase的表结构 把所有的数据存到一张表中.通过牺牲表空间,换取良好的性能. HBase的列以列族的形式存在.每一个列族包括若干列 2.HBase的体系结构 主 ...
- Linux新增用户,并设置Root(管理员)权限
在使用Linux过程中,Root账号拥有最大的操作权限.为保证Root账号安全,一般不直接使用Root账号,而是直接创建一个拥有Root权限的其它账号来使用.详细操作步骤如下 第一步,创建用户,如下图 ...
- Solr集群环境搭建
一.准备工作 首先保证已经安装JDK工具包: [root@localhost opt]# java -version java version "1.8.0_144" Java(T ...
- 前端每日实战:138# 视频演示如何用纯 CSS 创作一张 iPhone 价格信息图
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/OorLGZ 可交互视频 此视频是可 ...
- iOS Beta 升级或降级
https://sspai.com/post/45442 public beta网站上安装profile, 去手机看更新 developer beta, 登录开发者网站, downloads, 下载p ...
- centos 6.8 安装 WebVirtMgr
1.kvm虚拟机已经用 virsh命令装好了 2. WebVirtMgr的安装步骤完全参照此处: https://github.com/retspen/webvirtmgr/wiki/Install- ...
- codeblocks-error: Illegal byte sequence
error: converting to execution character set: Illegal byte sequence 对于源码包含有中文编译过程中出现如上的错误 解决办法:在Comp ...
- 三十六、python 中subprocess介绍
import subprocess 1.执行系统命令subprocess.call('ipconfig') #shell=False时,拼接命令分开写,放在列表中,等于True时,可写一块,空格隔开例 ...
- Ajax的封装。
封装 Ajax 因为Ajax 使用起来比较麻烦,主要就是参数问题,比如到底使用GET 还是POST:到 底是使用同步还是异步等等,我们需要封装一个Ajax 函数,来方便我们调用. 封装支持接收来 ...
- 【LeetCode】 两数之和 twoSum
两数之和 (简单) 题目描述 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数: 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 例如: 给定 nums = [2,7,11, ...