前言

分布式锁一般有三种实现方式:1. 数据库乐观锁;2. 基于Redis的分布式锁;3. 基于ZooKeeper的分布式锁。本篇博客将介绍第二种方式,基于Redis实现分布式锁。虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁。


可靠性

首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:

  1. 互斥性。在任意时刻,只有一个客户端能持有锁。
  2. 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
  3. 具有容错性。只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。
  4. 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。

代码实现

组件依赖

首先我们要通过Maven引入Jedis开源组件,在pom.xml文件加入下面的代码:

<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>

加锁代码

正确姿势

Talk is cheap, show me the code。先展示代码,再带大家慢慢解释为什么这样实现:

public class RedisTool {

    private static final String LOCK_SUCCESS = "OK";
private static final String SET_IF_NOT_EXIST = "NX";
private static final String SET_WITH_EXPIRE_TIME = "PX"; /**
* 尝试获取分布式锁
* @param jedis Redis客户端
* @param lockKey 锁
* @param requestId 请求标识
* @param expireTime 超期时间
* @return 是否获取成功
*/
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) { String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime); if (LOCK_SUCCESS.equals(result)) {
return true;
}
return false; } }

可以看到,我们加锁就一行代码:jedis.set(String key, String value, String nxxx, String expx, int time),这个set()方法一共有五个形参:

  • 第一个为key,我们使用key来当锁,因为key是唯一的。

  • 第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。

  • 第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

  • 第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

  • 第五个为time,与第四个参数相呼应,代表key的过期时间。

总的来说,执行上面的set()方法就只会导致两种结果:1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。2. 已有锁存在,不做任何操作。

心细的童鞋就会发现了,我们的加锁代码满足我们可靠性里描述的三个条件。首先,set()加入了NX参数,可以保证如果已有key存在,则函数不会调用成功,也就是只有一个客户端能持有锁,满足互斥性。其次,由于我们对锁设置了过期时间,即使锁的持有者后续发生崩溃而没有解锁,锁也会因为到了过期时间而自动解锁(即key被删除),不会发生死锁。最后,因为我们将value赋值为requestId,代表加锁的客户端请求标识,那么在客户端在解锁的时候就可以进行校验是否是同一个客户端。由于我们只考虑Redis单机部署的场景,所以容错性我们暂不考虑。

错误示例1

比较常见的错误示例就是使用jedis.setnx()jedis.expire()组合实现加锁,代码如下:

public static void wrongGetLock1(Jedis jedis, String lockKey, String requestId, int expireTime) {

    Long result = jedis.setnx(lockKey, requestId);
if (result == 1) {
// 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
jedis.expire(lockKey, expireTime);
} }

setnx()方法作用就是SET IF NOT EXIST,expire()方法就是给锁加一个过期时间。乍一看好像和前面的set()方法结果一样,然而由于这是两条Redis命令,不具有原子性,如果程序在执行完setnx()之后突然崩溃,导致锁没有设置过期时间。那么将会发生死锁。网上之所以有人这样实现,是因为低版本的jedis并不支持多参数的set()方法。

错误示例2

这一种错误示例就比较难以发现问题,而且实现也比较复杂。实现思路:使用jedis.setnx()命令实现加锁,其中key是锁,value是锁的过期时间。执行过程:1. 通过setnx()方法尝试加锁,如果当前锁不存在,返回加锁成功。2. 如果锁已经存在则获取锁的过期时间,和当前时间比较,如果锁已经过期,则设置新的过期时间,返回加锁成功。代码如下:

public static boolean wrongGetLock2(Jedis jedis, String lockKey, int expireTime) {

    long expires = System.currentTimeMillis() + expireTime;
String expiresStr = String.valueOf(expires); // 如果当前锁不存在,返回加锁成功
if (jedis.setnx(lockKey, expiresStr) == 1) {
return true;
} // 如果锁存在,获取锁的过期时间
String currentValueStr = jedis.get(lockKey);
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
// 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间
String oldValueStr = jedis.getSet(lockKey, expiresStr);
if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
// 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才有权利加锁
return true;
}
} // 其他情况,一律返回加锁失败
return false; }

那么这段代码问题在哪里?1. 由于是客户端自己生成过期时间,所以需要强制要求分布式下每个客户端的时间必须同步。 2. 当锁过期的时候,如果多个客户端同时执行jedis.getSet()方法,那么虽然最终只有一个客户端可以加锁,但是这个客户端的锁的过期时间可能被其他客户端覆盖。3. 锁不具备拥有者标识,即任何客户端都可以解锁。

解锁代码

正确姿势

还是先展示代码,再带大家慢慢解释为什么这样实现:

public class RedisTool {

    private static final Long RELEASE_SUCCESS = 1L;

    /**
* 释放分布式锁
* @param jedis Redis客户端
* @param lockKey 锁
* @param requestId 请求标识
* @return 是否释放成功
*/
public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) { String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId)); if (RELEASE_SUCCESS.equals(result)) {
return true;
}
return false; } }

可以看到,我们解锁只需要两行代码就搞定了!第一行代码,我们写了一个简单的Lua脚本代码,上一次见到这个编程语言还是在《黑客与画家》里,没想到这次居然用上了。第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行。

那么这段Lua代码的功能是什么呢?其实很简单,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。那么为什么要使用Lua语言来实现呢?因为要确保上述操作是原子性的。关于非原子性会带来什么问题,可以阅读【解锁代码-错误示例2】 。那么为什么执行eval()方法可以确保原子性,源于Redis的特性,下面是官网对eval命令的部分解释:

简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命令。

错误示例1

最常见的解锁代码就是直接使用jedis.del()方法删除锁,这种不先判断锁的拥有者而直接解锁的方式,会导致任何客户端都可以随时进行解锁,即使这把锁不是它的。

public static void wrongReleaseLock1(Jedis jedis, String lockKey) {
jedis.del(lockKey);
}

错误示例2

这种解锁代码乍一看也是没问题,甚至我之前也差点这样实现,与正确姿势差不多,唯一区别的是分成两条命令去执行,代码如下:

public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {

    // 判断加锁与解锁是不是同一个客户端
if (requestId.equals(jedis.get(lockKey))) {
// 若在此时,这把锁突然不是这个客户端的,则会误解锁
jedis.del(lockKey);
} }

如代码注释,问题在于如果调用jedis.del()方法的时候,这把锁已经不属于当前客户端的时候会解除他人加的锁。那么是否真的有这种场景?答案是肯定的,比如客户端A加锁,一段时间之后客户端A解锁,在执行jedis.del()之前,锁突然过期了,此时客户端B尝试加锁成功,然后客户端A再执行del()方法,则将客户端B的锁给解除了。


总结

本文主要介绍了如何使用Java代码正确实现Redis分布式锁,对于加锁和解锁也分别给出了两个比较经典的错误示例。其实想要通过Redis实现分布式锁并不难,只要保证能满足可靠性里的四个条件。互联网虽然给我们带来了方便,只要有问题就可以google,然而网上的答案一定是对的吗?其实不然,所以我们更应该时刻保持着质疑精神,多想多验证。

如果你的项目中Redis是多机部署的,那么可以尝试使用Redisson实现分布式锁,这是Redis官方提供的Java组件,链接在参考阅读章节已经给出。

Redis分布式锁【正确实现方式】的更多相关文章

  1. redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  2. 关于redis分布式锁的实现方式(转载)

    这个是在网上找到的一个大神写的(http://wudashan.cn/2017/10/23/Redis-Distributed-Lock-Implement/),对于分布式redis部署的,可以参考r ...

  3. Redis全方位详解--数据类型使用场景和redis分布式锁的正确姿势

    一.Redis数据类型 1.string string是Redis的最基本数据类型,一个key对应一个value,每个value最大可存储512M.string一半用来存图片或者序列化的数据. 2.h ...

  4. python redis分布式锁改进

    0X01 python redis分布式锁通用方法 REDIS分布式锁实现的方式:SETNX + GETSET 使用Redis SETNX 命令实现分布式锁 python 版本实现上述思路(案例1) ...

  5. Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  6. Redis(十三):Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  7. Redis分布式锁的正确实现方式(Java版)

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  8. Redis 分布式锁 - 分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  9. Redis 分布式锁的正确实现方式(转)

    _ 前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各 ...

  10. 一篇文章带你解读Redis分布式锁的发展史和正确实现方式

    前言 近两年来微服务变得越来越热门,越来越多的应用部署在分布式环境中,在分布式环境中,数据一致性是一直以来需要关注并且去解决的问题,分布式锁也就成为了一种广泛使用的技术,常用的分布式实现方式为Redi ...

随机推荐

  1. SpringMVC传参注解@RequestParam,@RequestBody,@ResponseBody,@ModelAttribute

    参考文档:https://blog.csdn.net/walkerjong/article/details/7946109 https://www.cnblogs.com/daimajun/p/715 ...

  2. 冲刺周—The First Day

    一.FirstDay照片 二.项目分工 三.今日份燃尽图 四.项目进展 码云团队协同环境构建完毕 利用Leangoo制作任务分工及生成燃尽图 完成AES加解密部分代码 五.问题与困难 1.AES加解密 ...

  3. Python 列表反转显示方法

    第一种,使用reversed 函数,reversed返回的结果是一个反转的迭代器,我们需要对其进行 list 转换 listNode = [1,2,3,4,5] newList = list(reve ...

  4. LeetCode 10——正则表达式匹配

    1. 题目 2. 解答 在 回溯算法 中我们介绍了一种递归的思路来求解这个问题. 此外,这个问题也可以用动态规划的思路来解决.我们定义状态 \(P[i][j]\) 为子串 \(s[0, i)\) 和 ...

  5. 图书-软件架构:《Design Patterns: Elements of Reusable Object-Oriented Software》(即后述《设计模式》一书)

    ylbtech-图书-软件架构:<Design Patterns: Elements of Reusable Object-Oriented Software>(即后述<设计模式&g ...

  6. python实现格式化输出9*9乘法表

    # python 9*9 乘法表 for i in range(1,10): for j in range(1,i+1): print("%s*%s=%s"%(i,j,i*j),e ...

  7. Delphi XE2 之 FireMonkey 入门(22) - 数据绑定: BindingSource、BindingName、FindBinding()、Binding[]

    在窗体上添加 TrackBar1.Edit1.Label1, 然后设置属性(可在设计时): procedure TForm1.FormCreate(Sender: TObject); begin   ...

  8. stack() unstack()函数

    总结: 1.stack:  将数据的列索引转换为行索引 2.unstack:将数据的行索引转换为列索引 3.stack和unstack默认操作为最内层,可以用level参数指定操作层. 4.stack ...

  9. Numpy和Pandas

    NumPy是高性能科学计算和数据分析的基础包.数据结构为ndarray,一般有三种方式来创建.ndarray是N-Dimensions-Array(N维数组)的简称,ndarray要求元素数据类型一致 ...

  10. 券商VIP交易通道

    打新不成就炒新.随着新股发行上市的再次重启,巨大的获利机会引来投资者的争相竞逐,可并非所有投资者都能抢到新股筹码.“每天都在涨停板追这些新股,但从来没有买到过.”证券时报记者在采访中听到不少中小散户如 ...